Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 57(8): 1202-1213, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38530881

RESUMO

ConspectusThe preparation of discrete and well-defined polymers is an emerging strategy for emulating the remarkable precision achieved by macromolecular synthesis in nature. Although modern controlled polymerization techniques have unlocked access to a cornucopia of materials spanning a broad range of monomers, molecular weights, and architectures, the word "controlled" is not to be confused with "perfect". Indeed, even the highest-fidelity polymerization techniques─yielding molar mass dispersities in the vicinity of D = 1.05─unavoidably create a considerable degree of structural and/or compositional dispersity due to the statistical nature of chain growth. Such dispersity impacts many of the properties that researchers seek to control in the design of soft materials.The development of strategies to minimize or entirely eliminate dispersity and access molecularly precise polymers therefore remains a key contemporary challenge. While significant advances have been made in the realm of iterative synthetic methods that construct oligomers with an exact molecular weight, head-to-tail connectivity, and even stereochemistry via small-molecule organic chemistry, as the word "iterative" suggests, these techniques involve manually propagating monomers one reaction at a time, often with intervening protection and deprotection steps. As a result, these strategies are time-consuming, difficult to scale, and remain limited to lower molecular weights. The focus of this Account is on an alternative strategy that is more accessible to the general scientific community because of its simplicity, versatility, and affordability: chromatography. Researchers unfamiliar with the intricacies of synthesis may recall being exposed to chromatography in an undergraduate chemistry lab. This operationally simple, yet remarkably powerful, technique is most commonly encountered in the purification of small molecules through their selective (differential) adsorption to a column packed with a low-cost stationary phase, usually silica. Because the requisite equipment is readily available and the actual separation takes little time (on the order of 1 h), chromatography is used extensively in small-molecule chemistry throughout industry and academia alike. It is, therefore, perhaps surprising that similar types of chromatography are not more widely leveraged in the field of polymer science as well.Here, we discuss recent advances in using chromatography to control the structure and properties of polymeric materials. Emphasis is placed on the utility of an adsorption-based mechanism that separates polymers based on polarity and composition at tractable (gram) scales for materials science, in contrast to size exclusion, which is extremely common but typically analyzes very small quantities of a sample (∼1 mg) and is limited to separating by molar mass. Key concepts that are highlighted include (1) the separation of low-molecular-weight homopolymers into discrete oligomers (D = 1.0) with precise chain lengths and (2) the efficient fractionation of block copolymers into high-quality and widely varied libraries for accelerating materials discovery. In summary, the authors hope to convey the exciting possibilities in polymer science afforded by chromatography as a scalable, versatile, and even automated technique that unlocks new avenues of exploration into well-defined materials for a diverse assortment of researchers with different training and expertise.

2.
J Am Chem Soc ; 146(12): 8650-8658, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38489842

RESUMO

The development of synthetic oligomers as discrete single molecular entities with accurate control over the number and nature of functional groups along the backbone has enabled a variety of new research opportunities. From fundamental studies of self-assembly in materials science to understanding efficacy and safety profiles in biology and pharmaceuticals, future directions are significantly impacted by the availability of discrete, multifunctional oligomers. However, the preparation of diverse libraries of discrete and stereospecific oligomers remains a significant challenge. We report a novel strategy for accelerating the synthesis and isolation of discrete oligomers in a high-throughput manner based on click chemistry and simplified bead-based purification. The resulting synthetic platform allows libraries of discrete polyether oligomers to be prepared and the impact of variables such as chain length, number, and nature of side chain functionalities and molecular dispersity on antibacterial behavior examined. Significantly, discrete oligomers were shown to exhibit enhanced activity with lower toxicity compared with traditional disperse samples. This work provides a practical and scalable methodology for nonexperts to prepare libraries of multifunctional discrete oligomers and demonstrates the advantages of discrete materials in biological applications.


Assuntos
Química Click
3.
Chem Rev ; 122(1): 167-208, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34609131

RESUMO

The applications of fluorinated molecules in bioengineering and nanotechnology are expanding rapidly with the controlled introduction of fluorine being broadly studied due to the unique properties of C-F bonds. This review will focus on the design and utility of C-F containing materials in imaging, therapeutics, and environmental applications with a central theme being the importance of controlling fluorine-fluorine interactions and understanding how such interactions impact biological behavior. Low natural abundance of fluorine is shown to provide sensitivity and background advantages for imaging and detection of a variety of diseases with 19F magnetic resonance imaging, 18F positron emission tomography and ultrasound discussed as illustrative examples. The presence of C-F bonds can also be used to tailor membrane permeability and pharmacokinetic properties of drugs and delivery agents for enhanced cell uptake and therapeutics. A key message of this review is that while the promise of C-F containing materials is significant, a subset of highly fluorinated compounds such as per- and polyfluoroalkyl substances (PFAS), have been identified as posing a potential risk to human health. The unique properties of the C-F bond and the significant potential for fluorine-fluorine interactions in PFAS structures necessitate the development of new strategies for facile and efficient environmental removal and remediation. Recent progress in the development of fluorine-containing compounds as molecular imaging and therapeutic agents will be reviewed and their design features contrasted with environmental and health risks for PFAS systems. Finally, present challenges and future directions in the exploitation of the biological aspects of fluorinated systems will be described.


Assuntos
Recuperação e Remediação Ambiental , Flúor , Flúor/química , Humanos , Imagem Molecular , Preparações Farmacêuticas , Tomografia por Emissão de Pósitrons
4.
J Am Chem Soc ; 145(41): 22728-22734, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37813389

RESUMO

Here, we present the synthesis and characterization of statistical and block copolymers containing α-lipoic acid (LA) using reversible addition-fragmentation chain-transfer (RAFT) polymerization. LA, a readily available nutritional supplement, undergoes efficient radical ring-opening copolymerization with vinyl monomers in a controlled manner with predictable molecular weights and low molar-mass dispersities. Because lipoic acid diads present in the resulting copolymers include disulfide bonds, these materials efficiently and rapidly degrade when exposed to mild reducing agents such as tris(2-carboxyethyl)phosphine (Mn = 56 → 3.6 kg mol-1). This scalable and versatile polymerization method affords a facile way to synthesize degradable polymers with controlled architectures, molecular weights, and molar-mass dispersities from α-lipoic acid, a commercially available and renewable monomer.

5.
Small ; 19(50): e2302794, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37428470

RESUMO

Shear-recoverable hydrogels based on block copolypeptides with rapid self-recovery hold potential in extrudable and injectable 3D-printing applications. In this work, a series of 3-arm star-shaped block copolypeptides composed of an inner hydrophilic poly(l-glutamate) domain and an outer ß-sheet forming domain is synthesized with varying side chains and block lengths. By changing the ß-sheet forming domains, hydrogels with diverse microstructures and mechanical properties are prepared and structure-function relationships are determined using scattering and rheological techniques. Differences in the properties of these materials are amplified during direct-ink writing with a strong correlation observed between printability and material chemistry. Significantly, it is observed that non-canonical ß-sheet blocks based on phenyl glycine form more stable networks with superior mechanical properties and writability compared to widely used natural amino acid counterparts. The versatile design available through block copolypeptide materials provides a robust platform to access tunable material properties based solely on molecular design. These systems can be exploited in extrusion-based applications such as 3D-printing without the need for additives.

6.
Nat Mater ; 21(9): 1057-1065, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35788569

RESUMO

Rechargeable batteries paired with sodium metal anodes are considered to be one of the most promising high-energy and low-cost energy-storage systems. However, the use of highly reactive sodium metal and the formation of sodium dendrites during battery operation have caused safety concerns, especially when highly flammable liquid electrolytes are used. Here we design and develop solvent-free solid polymer electrolytes (SPEs) based on a perfluoropolyether-terminated polyethylene oxide (PEO)-based block copolymer for safe and stable all-solid-state sodium metal batteries. Compared with traditional PEO SPEs, our results suggest that block copolymer design allows for the formation of self-assembled nanostructures leading to high storage modulus at elevated temperatures with the PEO domains providing transport channels even at high salt concentration (ethylene oxide/sodium = 8/2). Moreover, it is demonstrated that the incorporation of perfluoropolyether segments enhances the Na+ transference number of the electrolyte to 0.46 at 80 °C and enables a stable solid electrolyte interface. The new SPE exhibits highly stable symmetric cell-cycling performance at high current density (0.5 mA cm-2 and 1.0 mAh cm-2, up to 1,000 h). Finally, the assembled all-solid-state sodium metal batteries demonstrate outstanding capacity retention, long-term charge/discharge stability (Coulombic efficiency, 99.91%; >900 cycles with Na3V2(PO4)3 cathode) and good capability with high loading NaFePO4 cathode (>1 mAh cm-2).

7.
Biomacromolecules ; 24(8): 3580-3588, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37486022

RESUMO

Biomolecular assembly processes involving competition between specific intermolecular interactions and thermodynamic phase instability have been implicated in a number of pathological states and technological applications of biomaterials. As a model for such processes, aqueous mixtures of oppositely charged homochiral polypeptides such as poly-l-lysine and poly-l-glutamic acid have been reported to form either ß-sheet-rich solid-like precipitates or liquid-like coacervate droplets depending on competing hydrogen bonding interactions. Herein, we report studies of polypeptide mixtures that reveal unexpectedly diverse morphologies ranging from partially coalescing and aggregated droplets to bulk precipitates, as well as a previously unreported re-entrant liquid-liquid phase separation at high polypeptide concentration and ionic strength. Combining our experimental results with all-atom molecular dynamics simulations of folded polypeptide complexes reveals a concentration dependence of ß-sheet-rich secondary structure, whose relative composition correlates with the observed macroscale morphologies of the mixtures. These results elucidate a crucial balance of interactions that are important for controlling morphology during coacervation in these and potentially similar biologically relevant systems.


Assuntos
Peptídeos , Conformação Proteica em Folha beta , Peptídeos/química , Estrutura Secundária de Proteína , Ligação de Hidrogênio , Concentração Osmolar
8.
J Am Chem Soc ; 144(42): 19466-19474, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36240519

RESUMO

Poly(ethylene glycol) (PEG) is an important and widely used polymer in biological and pharmaceutical applications for minimizing nonspecific binding while improving blood circulation for therapeutic/imaging agents. However, commercial PEG samples are polydisperse, which hampers detailed studies on chain length-dependent properties and potentially increases antibody responses in pharmaceutical applications. Here, we report a practical and scalable method to prepare libraries of discrete PEG analogues with a branched, nonlinear structure. These lipid-PEG derivatives have a monodisperse backbone with side chains containing a discrete number of ethylene glycol units (3 or 4) and unique functionalizable chain ends. Significantly, the branched, nonlinear structure is shown to allow for efficient nanoparticle assembly while reducing anti-PEG antibody recognition when compared to commercial polydisperse linear systems, such as DMG-PEG2000. By enabling the scalable synthesis of a broad library of graft copolymers, fundamental self-assembly properties can be understood and shown to directly correlate with the total number of PEG units, nature of the chain ends, and overall backbone length. These results illustrate the advantages of discrete macromolecules when compared to traditional disperse materials.


Assuntos
Nanopartículas , Polietilenoglicóis , Polietilenoglicóis/química , Polímeros/química , Micelas , Nanopartículas/química , Lipídeos
9.
Proc Natl Acad Sci U S A ; 116(27): 13194-13199, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209038

RESUMO

The self-assembly of block polymers into well-ordered nanostructures underpins their utility across fundamental and applied polymer science, yet only a handful of equilibrium morphologies are known with the simplest AB-type materials. Here, we report the discovery of the A15 sphere phase in single-component diblock copolymer melts comprising poly(dodecyl acrylate)-block-poly(lactide). A systematic exploration of phase space revealed that A15 forms across a substantial range of minority lactide block volume fractions (fL = 0.25 - 0.33) situated between the σ-sphere phase and hexagonally close-packed cylinders. Self-consistent field theory rationalizes the thermodynamic stability of A15 as a consequence of extreme conformational asymmetry. The experimentally observed A15-disorder phase transition is not captured using mean-field approximations but instead arises due to composition fluctuations as evidenced by fully fluctuating field-theoretic simulations. This combination of experiments and field-theoretic simulations provides rational design rules that can be used to generate unique, polymer-based mesophases through self-assembly.

10.
J Am Chem Soc ; 143(26): 9866-9871, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34170665

RESUMO

We introduce a novel grafting-through polymerization strategy to synthesize dynamic bottlebrush polymers and elastomers in one step using light to construct a disulfide-containing backbone. The key starting material-α-lipoic acid (LA)-is commercially available, inexpensive, and biocompatible. When installed on the chain end(s) of poly(dimethylsiloxane) (PDMS), the cyclic disulfide unit derived from LA polymerizes under ultraviolet (UV) light in ambient conditions. Significantly, no additives such as initiator, solvent, or catalyst are required for efficient gelation. Formulations that include bis-LA-functionalized cross-linker yield bottlebrush elastomers with high gel fractions (83-98%) and tunable, supersoft shear moduli in the ∼20-200 kPa range. An added advantage of these materials is the dynamic disulfide bonds along each bottlebrush backbone, which allow for light-mediated self-healing and on-demand chemical degradation. These results highlight the potential of simple and scalable synthetic routes to generate unique bottlebrush polymers and elastomers based on PDMS.

11.
J Am Chem Soc ; 143(3): 1562-1569, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33439016

RESUMO

Self-healing polymer electrolytes are reported with light-switchable conductivity based on dynamic N-donor ligand-containing diarylethene (DAE) and multivalent Ni2+ metal-ion coordination. Specifically, a polystyrene polymer grafted with poly(ethylene glycol-r-DAE)acrylate copolymer side chains was effectively cross-linked with nickel(II) bis(trifluoromethanesulfonimide) (Ni(TFSI)2) salts to form a dynamic network capable of self-healing with fast exchange kinetics under mild conditions. Furthermore, as a photoswitching compound, the DAE undergoes a reversible structural and electronic rearrangement that changes the binding strength of the DAE-Ni2+ complex under irradiation. This can be observed in the DAE-containing polymer electrolyte where irradiation with UV light triggers an increase in the resistance of solid films, which can be recovered with subsequent visible light irradiation. The increase in resistance under UV light irradiation indicates a decrease in ion mobility after photoswitching, which is consistent with the stronger binding strength of ring-closed DAE isomers with Ni2+. 1H-15N heteronuclear multiple-bond correlation nuclear magnetic resonance (HMBC NMR) spectroscopy, continuous wave electron paramagnetic resonance (cw EPR) spectroscopy, and density functional theory (DFT) calculations confirm the increase in binding strength between ring-closed DAE with metals. Rheological and in situ ion conductivity measurements show that these polymer electrolytes efficiently heal to recover their mechanical properties and ion conductivity after damage, illustrating potential applications in smart electronics.

12.
J Am Chem Soc ; 143(35): 14106-14114, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34448579

RESUMO

The hexagonally close-packed (HCP) sphere phase is predicted to be stable across a narrow region of linear block copolymer phase space, but the small free energy difference separating it from face-centered cubic spheres usually results in phase coexistence. Here, we report the discovery of pure HCP spheres in linear block copolymer melts with A = poly(2,2,2-trifluoroethyl acrylate) ("F") and B = poly(2-dodecyl acrylate) ("2D") or poly(4-dodecyl acrylate) ("4D"). In 4DF diblocks and F4DF triblocks, the HCP phase emerges across a substantial range of A-block volume fractions (circa fA = 0.25-0.30), and in F4DF, it forms reversibly when subjected to various processing conditions which suggests an equilibrium state. The time scale associated with forming pure HCP upon quenching from a disordered liquid is intermediate to the ordering kinetics of the Frank-Kasper σ and A15 phases. However, unlike σ and A15, HCP nucleates directly from a supercooled liquid or soft solid without proceeding through an intermediate quasicrystal. Self-consistent field theory calculations indicate the stability of HCP is intimately tied to small amounts of molar mass dispersity (D); for example, an HCP-forming F4DF sample with fA = 0.27 has an experimentally measured D = 1.04. These insights challenge the conventional wisdom that pure HCP is difficult to access in linear block copolymer melts without the use of blending or other complex processing techniques.


Assuntos
Resinas Acrílicas/química , Transição de Fase , Temperatura de Transição
13.
Mol Pharm ; 18(3): 1386-1396, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33591187

RESUMO

Chemokines and chemokine receptors play an important role in the initiation and progression of atherosclerosis by mediating the trafficking of inflammatory cells. Chemokine receptor 5 (CCR5) has major implications in promoting the development of plaques to advanced stage and related vulnerability. CCR5 antagonist has demonstrated the effective inhibition of atherosclerotic progression in mice, making it a potential biomarker for atherosclerosis management. To accurately determine CCR5 in vivo, we synthesized CCR5 targeted Comb nanoparticles through a modular design and construction strategy with control over the physiochemical properties and functionalization of CCR5 targeting peptide d-Ala-peptide T-amide (DAPTA-Comb). In vivo pharmacokinetic evaluation through 64Cu radiolabeling showed extended blood circulation of 64Cu-DAPTA-Combs conjugated with 10%, 25%, and 40% DAPTA. The different organ distribution profiles of the three nanoparticles demonstrated the effect of DAPTA on not only physicochemical properties but also targeting efficiency. In vivo positron emission tomography/computed tomography (PET/CT) imaging in an apolipoprotein E knockout mouse atherosclerosis model (ApoE-/-) showed that the three 64Cu-DAPTA-Combs could sensitively and specifically detect CCR5 along the progression of atherosclerotic lesions. In an ApoE-encoding adenoviral vector (AAV) induced plaque regression ApoE-/- mouse model, decreased monocyte recruitment, CD68+ macrophages, CCR5 expression, and plaque size were all associated with reduced PET signals, which not only further confirmed the targeting efficiency of 64Cu-DAPTA-Combs but also highlighted the potential of these targeted nanoparticles for atherosclerosis imaging. Moreover, the up-regulation of CCR5 and colocalization with CD68+ macrophages in the necrotic core of ex vivo human plaque specimens warrant further investigation for atherosclerosis prognosis.


Assuntos
Aterosclerose/diagnóstico por imagem , Aterosclerose/metabolismo , Nanopartículas/administração & dosagem , Receptores CCR5/metabolismo , Alanina/metabolismo , Animais , Apolipoproteínas E/metabolismo , Quimiocinas/metabolismo , Radioisótopos de Cobre/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/metabolismo
14.
J Am Chem Soc ; 142(21): 9843-9849, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32421319

RESUMO

A versatile and scalable strategy is reported for the rapid generation of block copolymer libraries spanning a wide range of compositions starting from a single parent copolymer. This strategy employs automated and operationally simple chromatographic separation that is demonstrated to be applicable to a variety of block copolymer chemistries on multigram scales with excellent mass recovery. The corresponding phase diagrams exhibit increased compositional resolution compared to those traditionally constructed via multiple, individual block copolymer syntheses. Increased uniformity and lower dispersity of the chromatographic libraries lead to differences in the location of order-order transitions and observable morphologies, highlighting the influence of dispersity on the self-assembly of block copolymers. Significantly, this separation technique greatly simplifies the exploration of block copolymer phase space across a range of compositions, monomer pairs, and molecular weights (up to 50000 amu), producing materials with increased control and homogeneity when compared to conventional strategies.


Assuntos
Automação , Polímeros/isolamento & purificação , Estrutura Molecular , Peso Molecular , Polímeros/química
15.
J Am Chem Soc ; 142(4): 1667-1672, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31909990

RESUMO

DNA-mediated assembly of inorganic particles has demonstrated to be a powerful approach for preparing nanomaterials with a range of interesting optical and electrical properties. Building on this inspiration, we describe a generalizable gram-scale method to assemble nanoparticles through the formation of poly(methyl methacrylate) (PMMA) triple-helices. In this work, alkene-terminated syndiotactic (st-) and isotactic (it-) PMMA polymers were prepared and subsequently functionalized to afford nanoparticle ligands. Nanoparticles with complementary st- and it-PMMA ligands could then be spontaneously assembled upon mixing at room temperature. This process was robust and fully reversible through multiple heating and cooling cycles. The versatility of PMMA stereocomplexation was highlighted by assembling hybrid structures composed of nanoparticles of different compositions (e.g., Au and quantum dots) and shapes (e.g., spheres and rods). These initial demonstrations of nanoparticle self-assembly from inexpensive PMMA-based materials present an attractive alternative to DNA-based nanomaterials.

16.
Angew Chem Int Ed Engl ; 59(13): 5123-5128, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-31925869

RESUMO

Polymeric ionic liquids (PILs) have attracted considerable attention as electrolytes with high stability and mechanical durability. Light-responsive materials are enabling for a variety of future technologies owing to their remote and noninvasive manipulation, spatiotemporal control, and low environmental impact. To address this potential, responsive PIL materials based on diarylethene units were designed to undergo light-mediated conductivity changes. Key to this modulation is tuning of the cationic character of the imidazolium bridging unit upon photoswitching. Irradiation of these materials with UV light triggers a circa 70 % drop in conductivity in the solid state that can be recovered upon subsequent irradiation with visible light. This light-responsive ionic conductivity enables spatiotemporal and reversible patterning of PIL films using light. This modulation of ionic conductivity allows for the development of light-controlled electrical circuits and wearable photodetectors.

17.
J Am Chem Soc ; 141(6): 2630-2635, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30721057

RESUMO

Inspired by nanotechnologies based on DNA strand displacement, herein we demonstrate that synthetic helical strand exchange can be achieved through tuning of poly(methyl methacrylate) (PMMA) triple-helix stereocomplexes. To evaluate the utility and robustness of helical strand exchange, stereoregular PMMA/polyethylene glycol (PEG) block copolymers capable of undergoing crystallization driven self-assembly via stereocomplex formation were prepared. Micelles with spherical or wormlike morphologies were formed by varying the molecular weight composition of the assembling components. Significantly, PMMA strand exchange was demonstrated and utilized to reversibly switch the micelles between different morphologies. This concept of strand exchange with PMMA-based triple-helix stereocomplexes offers new opportunities to program dynamic behaviors of polymeric materials, leading to scalable synthesis of "smart" nanosystems.


Assuntos
DNA/química , Polimetil Metacrilato/química , Modelos Moleculares , Conformação de Ácido Nucleico , Estereoisomerismo
18.
J Am Chem Soc ; 141(34): 13619-13624, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31389231

RESUMO

Herein, we report the development of a scalable and synthetically robust building block based on norbornadiene (NBD) that can be broadly incorporated into a variety of macromolecular architectures using traditional living polymerization techniques. By taking advantage of a selective and rapid deprotection with tetrazine, highly reactive "masked" cyclopentadiene (Cp) functionalities can be introduced into synthetic polymers as chain-end groups in a quantitative and efficient manner. The orthogonality of this platform further enables a cascade "click" process where the "unmasked" Cp can rapidly react with dienophiles, such as maleimides, through a conventional Diels-Alder reaction. Coupling proceeds with quantitative conversions allowing high molecular weight star and dendritic block copolymers to be prepared in a single step under ambient conditions.


Assuntos
Ciclopentanos/síntese química , Norbornanos/síntese química , Polímeros/síntese química , Química Click , Reação de Cicloadição , Ciclopentanos/química , Peso Molecular , Norbornanos/química , Polimerização , Polímeros/química
19.
J Am Chem Soc ; 140(15): 5009-5013, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29613783

RESUMO

The development and application of a novel endo furan-protected maleimide building block is reported. The endo isomer undergoes deprotection at temperatures ∼50 °C below the exo derivative. This enables a simple and powerful approach to quantitatively and selectively introduce functional maleimide groups via temperature modulation.

20.
J Am Chem Soc ; 140(41): 13392-13406, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30230329

RESUMO

Natural biopolymers, such as DNA and proteins, have uniform microstructures with defined molecular weight, precise monomer sequence, and stereoregularity along the polymer main chain that affords them unique biological functions. To reproduce such structurally perfect polymers and understand the mechanism of specific functions through chemical approaches, researchers have proposed using synthetic polymers as an alternative due to their broad chemical diversity and relatively simple manipulation. Herein, we report a new methodology to prepare sequence-controlled and stereospecific oligomers using alternating radical chain growth and sequential photoinduced RAFT single unit monomer insertion (photo-RAFT SUMI). Two families of cyclic monomers, the indenes and the N-substituted maleimides, can be alternatively inserted into RAFT agents, one unit at a time, allowing the monomer sequence to be controlled through sequential and alternating monomer addition. Importantly, the stereochemistry of cyclic monomer insertion into the RAFT agents is found to be trans-selective along the main chains due to steric hindrance from the repeating monomer units. All investigated cyclic monomers provide such trans-selectivity, but analogous acyclic monomers give a mixed cis- and trans-insertion.


Assuntos
Indenos/química , Maleimidas/química , Polímeros/síntese química , Tionas/química , Técnicas de Química Sintética/métodos , Luz , Polimerização , Estereoisomerismo , Tionas/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA