Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hum Evol ; 187: 103490, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38266614

RESUMO

A frequent source of debate in paleoanthropology concerns the taxonomic unity of fossil assemblages, with many hominin samples exhibiting elevated levels of variation that can be interpreted as indicating the presence of multiple species. By contrast, the large assemblage of hominin fossils from the Rising Star cave system, assigned to Homo naledi, exhibits a remarkably low degree of variation for most skeletal elements. Many factors can contribute to low sample variation, including genetic drift, strong natural selection, biased sex ratios, and sampling of closely related individuals. In this study, we tested for potential sex-biased sampling in the Rising Star dental sample. We compared coefficients of variation for the H. naledi teeth to those for eight extant hominoid samples. We used a resampling procedure that generated samples from the extant taxa that matched the sample size of the fossil sample for each possible Rising Star dental sex ratio. We found that variation at four H. naledi tooth positions-I2, M1, P4, M1-is so low that the possibility that one sex is represented by few or no individuals in the sample cannot be excluded. Additional evidence is needed to corroborate this inference, such as ancient DNA or enamel proteome data, and our study design does not address other potential factors that would account for low sample variation. Nevertheless, our results highlight the importance of considering the taphonomic history of a hominin assemblage and suggest that sex-biased sampling is a plausible explanation for the low level of phenotypic variation found in some aspects of the current H. naledi assemblage.


Assuntos
Hominidae , Dente , Humanos , Animais , Fósseis , Deriva Genética , Dente Molar , Dente Decíduo
2.
Ann Hum Biol ; 51(1): 2321128, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38509686

RESUMO

BACKGROUND: Six Homo naledi early juveniles were recovered from U.W. 101 (Dinaledi Chamber), U.W. 102 (Lesedi Chamber), and U.W. 110 in the Rising Star cave system. AIM: This paper develops the information for the H. naledi early juvenile life stage, as defined by a combination of deciduous and permanent dentition, and the eruption of the first permanent molar. SUBJECTS AND METHODS: The growing number of young individuals recovered from the Rising Star cave system allows us to gain a better understanding of their variation, or lack thereof, and provides a basis to estimate broad ranges for age at death of the individuals. The individuals are identified and described through craniodental remains and spatial associations. RESULTS AND CONCLUSION: Our results show that the teeth are remarkably consistent across the localities in their metric and non-metric traits, and our analyses refine previous estimations on dental eruptions with the first permanent molar erupting first in the sequence among permanent teeth.


Assuntos
Hominidae , Dente , Animais , Humanos , África do Sul , Fósseis , Fenótipo
3.
Am J Hum Genet ; 107(2): 183-195, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32763189

RESUMO

Anticipating and addressing the social implications of scientific work is a fundamental responsibility of all scientists. However, expectations for ethically sound practices can evolve over time as the implications of science come to be better understood. Contemporary researchers who work with ancient human remains, including those who conduct ancient DNA research, face precisely this challenge as it becomes clear that practices such as community engagement are needed to address the important social implications of this work. To foster and promote ethical engagement between researchers and communities, we offer five practical recommendations for ancient DNA researchers: (1) formally consult with communities; (2) address cultural and ethical considerations; (3) engage communities and support capacity building; (4) develop plans to report results and manage data; and (5) develop plans for long-term responsibility and stewardship. Ultimately, every member of a research team has an important role in fostering ethical research on ancient DNA.


Assuntos
DNA Antigo/análise , Animais , Cuidados no Lar de Adoção , Humanos
4.
J Hum Evol ; 180: 103372, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37229947

RESUMO

More than 150 hominin teeth, dated to ∼330-241 thousand years ago, were recovered during the 2013-2015 excavations of the Dinaledi Chamber of the Rising Star cave system, South Africa. These fossils comprise the first large single-site sample of hominin teeth from the Middle Pleistocene of Africa. Though scattered remains attributable to Homo sapiens, or their possible lineal ancestors, are known from older and younger sites across the continent, the distinctive morphological feature set of the Dinaledi teeth supports the recognition of a novel hominin species, Homo naledi. This material provides evidence of African Homo lineage diversity that lasts until at least the Middle Pleistocene. Here, a catalog, anatomical descriptions, and details of preservation and taphonomic alteration are provided for the Dinaledi teeth. Where possible, provisional associations among teeth are also proposed. To facilitate future research, we also provide access to a catalog of surface files of the Rising Star jaws and teeth.


Assuntos
Hominidae , Dente , Humanos , Animais , África do Sul , Hominidae/anatomia & histologia , Fósseis , Cavernas , Evolução Biológica
5.
Am J Hum Biol ; 34 Suppl 1: e23699, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767283

RESUMO

BACKGROUND: Most anthropological researchers will engage with the public at some stage of their career. Some develop strong skills in public-facing work, building bridges between local and global communities and the scientific enterprise. Anthropology and archaeology are unsustainable without such community support. Yet engagement work often goes unrecognized and unrewarded within academic institutions. AIMS: We focus on ways to translate the value of public-facing work within academic career trajectories. We consider some of the challenges and benefits of such work for early career researchers and for senior researchers, and we provide guidance that will be helpful across a broad range of career objectives. MATERIALS AND METHODS: This study employs narratives of both early career and senior anthropologists. RESULTS: Both early career and senior researchers report challenges and successes in building public-facing work. DISCUSSION: Pursuing public-facing work in ways that are recognized in academic settings can be challenging both in early career and senior settings. The advice in this paper can help individuals build strategies that will lead to sustainable engagement and career progress. CONCLUSION: Attaining a balance between research and public engagement benefits both the fields of anthropology and human biology.


Assuntos
Pesquisadores , Humanos
6.
Proc Natl Acad Sci U S A ; 115(22): 5738-5743, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29760068

RESUMO

Hominin cranial remains from the Dinaledi Chamber, South Africa, represent multiple individuals of the species Homo naledi This species exhibits a small endocranial volume comparable to Australopithecus, combined with several aspects of external cranial anatomy similar to larger-brained species of Homo such as Homo habilis and Homo erectus Here, we describe the endocast anatomy of this recently discovered species. Despite the small size of the H. naledi endocasts, they share several aspects of structure in common with other species of Homo, not found in other hominins or great apes, notably in the organization of the inferior frontal and lateral orbital gyri. The presence of such structural innovations in a small-brained hominin may have relevance to behavioral evolution within the genus Homo.


Assuntos
Encéfalo/anatomia & histologia , Fósseis , Crânio/anatomia & histologia , Animais , Antropologia Física , Evolução Biológica , Hominidae , África do Sul
7.
J Neurosci Res ; 98(9): 1800-1814, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32415883

RESUMO

Deleterious age-related changes in the central auditory nervous system have been referred to as central age-related hearing impairment (ARHI) or central presbycusis. Central ARHI is often assumed to be the consequence of peripheral ARHI. However, it is possible that certain aspects of central ARHI are independent from peripheral ARHI. A confirmation of this possibility could lead to significant improvements in current rehabilitation practices. The major difficulty in addressing this issue arises from confounding factors, such as other age-related changes in both the cochlea and central non-auditory brain structures. Because gap detection is a common measure of central auditory temporal processing, and gap detection thresholds are less influenced by changes in other brain functions such as learning and memory, we investigated the potential relationship between age-related peripheral hearing loss (i.e., audiograms) and age-related changes in gap detection. Consistent with previous studies, a significant difference was found for gap detection thresholds between young and older adults. However, among older adults, no significant associations were observed between gap detection ability and several other independent variables including the pure tone audiogram average, the Wechsler Adult Intelligence Scale-Vocabulary score, gender, and age. Statistical analyses showed little or no contributions from these independent variables to gap detection thresholds. Thus, our data indicate that age-related decline in central temporal processing is largely independent of peripheral ARHI.


Assuntos
Percepção Auditiva/fisiologia , Perda Auditiva Central/fisiopatologia , Presbiacusia/fisiopatologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Limiar Auditivo , Cóclea/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Am J Phys Anthropol ; 173(1): 130-140, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32519366

RESUMO

OBJECTIVES: Obstetric demands have long been considered in the evolution of the pelvis, yet consideration of the interaction of pregnancy, the pelvis, and the gastrointestinal tract (gut) is lacking. Here, we explore sex differences in the relationship of gut volume with body size and pelvic dimensions. MATERIALS AND METHODS: Computed tomography (CT) scans of living adult Homo sapiens (46 females and 42 males) were obtained to measure in vivo gut volume (GV) and to extract 3D models of the pelvis. We collected 19 3D landmarks from each pelvis model to acquire pelvic measurements. We used ordinary least squares regression to explore relationships between GV and body weight, stature, and linear pelvic dimensions. RESULTS: The gut-pelvis relationship differs between males and females. Females do not exhibit significant statistical correlations between GV and any variable tested. GV correlates with body size and pelvic outlet size in males. GV scales with negative allometry relative to body weight, stature, maximum bi-iliac breadth, inferior transverse outlet breadth, and bispinous distance in males. DISCUSSION: The lack of association between GV and body size in females may be due to limits imposed by the anticipation of accommodating a gravid uterus and/or the increased plasticity of the pelvis. The pattern of relationship between GV and the pelvic outlet suggests the role of the bony pelvis in supporting the adominal viscera in females may be small relative to its role in childbirth. We conclude that gut size inference in fossil hominins from skeletal proxies is limited and confounded by sexual dimorphism.


Assuntos
Trato Gastrointestinal/anatomia & histologia , Pelve/anatomia & histologia , Caracteres Sexuais , Adulto , Pontos de Referência Anatômicos/anatomia & histologia , Pontos de Referência Anatômicos/diagnóstico por imagem , Pontos de Referência Anatômicos/fisiologia , Antropologia Física , Antropometria , Feminino , Trato Gastrointestinal/fisiologia , Humanos , Masculino , Pelve/diagnóstico por imagem , Pelve/fisiologia , Gravidez/fisiologia
10.
J Hum Evol ; 132: 1-14, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31203841

RESUMO

Excavations in the Lesedi Chamber (U.W. 102) of the Rising Star cave system from 2013 to 2015 resulted in the recovery of 131 fossils representing at least three individuals attributed to Homo naledi. Hominin fossils were recovered from three collection areas within the Lesedi Chamber. A partial skull with near complete dentition (LES1) and an associated partial skeleton were recovered from Area 102a, while craniodental remains from two other individuals were recovered from Areas 102b and 102c. Here we present detailed anatomical descriptions and metrical comparisons of the Lesedi Chamber H. naledi craniodental remains that preserve diagnostic morphology. The LES1 skull is a presumed male that is slightly larger in size, and shows greater development of ectocranial structures compared to other H. naledi specimens from the Dinaledi Chamber of the Rising Star cave system. Otherwise the Lesedi fossils are notably similar to the Dinaledi fossils in shape and morphology. The Lesedi fossils also preserve the delicate nasal and lacrimal bones that are otherwise unrecorded in the Dinaledi sample. Limited morphological differences between the Dinaledi and Lesedi Chamber hominin samples provides support for the hypothesis that these two assemblages share a close phyletic relationship.


Assuntos
Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Crânio/anatomia & histologia , Animais , Cavernas , Glicoproteínas de Membrana , Receptores de Interleucina-1 , África do Sul
11.
J Hum Evol ; 133: 61-77, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31358184

RESUMO

The abundant femoral assemblage of Homo naledi found in the Dinaledi Chamber provides a unique opportunity to test hypotheses regarding the taxonomy, locomotion, and loading patterns of this species. Here we describe neck and shaft cross-sectional structure of all the femoral fossils recovered in the Dinaledi Chamber and compare them to a broad sample of fossil hominins, recent humans, and extant apes. Cross-sectional geometric (CSG) properties from the femoral neck (base of neck and midneck) and diaphysis (subtrochanteric region and midshaft) were obtained through CT scans for H. naledi and through CT scans or from the literature for the comparative sample. The comparison of CSG properties of H. naledi and the comparative samples shows that H. naledi femoral neck is quite derived with low superoinferior cortical thickness ratio and high relative cortical area. The neck appears superoinferiorly elongated because of two bony pilasters on its superior surface. Homo naledi femoral shaft shows a relatively thick cortex compared to the other hominins. The subtrochanteric region of the diaphysis is mediolaterally elongated resembling early hominins while the midshaft is anteroposteriorly elongated, indicating high mobility levels. In term of diaphyseal robusticity, the H. naledi femur is more gracile that other hominins and most apes. Homo naledi shows a unique combination of characteristics in its femur that undoubtedly indicate a species committed to terrestrial bipedalism but with a unique loading pattern of the femur possibly consequence of the unique postcranial anatomy of the species.


Assuntos
Fêmur/anatomia & histologia , Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Animais , Densidade Óssea , Diáfises/anatomia & histologia , Diáfises/fisiologia , Fêmur/fisiologia , Colo do Fêmur/anatomia & histologia , Colo do Fêmur/fisiologia , Hominidae/fisiologia , África do Sul
13.
Am J Phys Anthropol ; 170(1): 5-23, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31228254

RESUMO

OBJECTIVES: The femoral remains recovered from the Lesedi Chamber are among the most complete South African fossil hominin femora discovered to date and offer new and valuable insights into the anatomy and variation of the bone in Homo naledi. While the femur is one of the best represented postcranial elements in the H. naledi assemblage from the Dinaledi Chamber, the fragmentary and commingled nature of the Dinaledi femoral remains has impeded the assessment of this element in its complete state. MATERIALS AND METHODS: Here we analyze and provide descriptions of three new relatively well-preserved femoral specimens of H. naledi from the Lesedi Chamber: U.W. 102a-001, U.W. 102a-003, and U.W. 102a-004. These femora are quantitatively and qualitatively compared to multiple extinct hominin femoral specimens, extant hominid taxa, and, where possible, each other. RESULTS: The Lesedi femora are morphologically similar to the Dinaledi femora for all overlapping regions, with differences limited to few traits of presently unknown significance. The Lesedi distal femur and mid-diaphysis preserve anatomy previously unidentified or unconfirmed in the species, including an anteroposteriorly expanded midshaft and anteriorly expanded patellar surface. The hypothesis that the Lesedi femoral sample may represent two individuals is supported. DISCUSSION: The Lesedi femora increase the range of variation of femoral morphology in H. naledi. Newly described features of the diaphysis and distal femur are either taxonomically uninformative or Homo-like. Overall, these three new femora are consistent with previous functional interpretations of the H. naledi lower limb as belonging to a species adapted for long distance walking and, possibly, running.


Assuntos
Fêmur , Fósseis , Hominidae , Animais , Antropologia Física , Evolução Biológica , Fêmur/anatomia & histologia , Fêmur/fisiologia , Hominidae/anatomia & histologia , Hominidae/fisiologia , Humanos , África do Sul , Caminhada/fisiologia
14.
J Hum Evol ; 125: 122-136, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29169681

RESUMO

In the hominin fossil record, pelvic remains are sparse and are difficult to attribute taxonomically when they are not directly associated with craniodental material. Here we describe the pelvic remains from the Dinaledi Chamber in the Rising Star cave system, Cradle of Humankind, South Africa, which has produced hominin fossils of a new species, Homo naledi. Though this species has been attributed to Homo based on cranial and lower limb morphology, the morphology of some of the fragmentary pelvic remains recovered align more closely with specimens attributed to the species Australopithecus afarensis and Australopithecus africanus than they do with those of most (but not all) known species of the genus Homo. As with A. afarensis and A. africanus, H. naledi appears to have had marked lateral iliac flare and either a weakly developed or non-existent acetabulocristal buttress or a distinct, albeit weakly developed, acetabulospinous buttress. At the same time, H. naledi has robust superior pubic and ischiopubic rami and a short ischium with a narrow tuberoacetabular sulcus, similar to those found in modern humans. The fragmentary nature of the Dinaledi pelvic assemblage makes the attribution of sex and developmental age to individual specimens difficult, which in turn diminishes our ability to identify the number of individuals represented in the assemblage. At present, we can only confidently say that the pelvic fossils from Rising Star represent at least four individuals based on the presence of four overlapping right ischial fossils (whereas a minimum of 15 individuals can be identified from the Dinaledi dental assemblage). A primitive, early Australopithecus-like false pelvis combined with a derived Homo-like true pelvis is morphologically consistent with evidence from the lower ribcage and proximal femur of H. naledi. The overall similarity of H. naledi ilia to those of australopiths supports the inference, drawn from the observation of primitive pelvic morphology in the extinct species Homo floresiensis, that there is substantial variation in pelvic form within the genus Homo. In the light of these findings, we urge caution in making taxonomic attributions-even at the genus level-of isolated fossil ossa coxae.


Assuntos
Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Pelve/anatomia & histologia , Animais , Cavernas , África do Sul
15.
J Hum Evol ; 122: 146-155, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30001870

RESUMO

This study describes three incudes recovered from the Dinaledi Chamber in the Rising Star cave system in South Africa. All three bones were recovered during sieving of excavated sediments and likely represent three Homo naledi individuals. Morphologically and metrically, the Dinaledi ossicles resemble those of chimpanzees and Paranthropus robustus more than they do later members of the genus Homo, and fall outside of the modern human range of variation in several dimensions. Despite this, when overall size is considered, the functional lengths in H. naledi and P. robustus are very similar to those predicted for a human with a similar-sized incus. In this sense, both taxa seem to show a relatively elongated functional length, distinguishing them from chimpanzees. The functional length in H. naledi is slightly longer in absolute terms than in P. robustus, suggesting H. naledi may already show a slight increase in functional length compared with early hominins. While H. naledi lacks the more open angle between the long and short processes found in modern humans, considered a derived feature within the genus Homo, the value in H. naledi is similar to that predicted for a hominoid with a similar-sized incus. Principal components analysis of size-standardized variables shows H. naledi falling outside of the recent human range of variation, but within the confidence ellipse for gorillas. Phylogenetic polarity is complicated by the absence of incus data from early members of the genus Homo, but the generally primitive nature of the H. naledi incudes is consistent with other primitive features of the species, such as the very small cranial capacity. These ossicles add significantly to the understanding of incus variation in hominins and provide important new data on the morphology and taxonomic affinities of H. naledi.


Assuntos
Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Bigorna/anatomia & histologia , Animais , África do Sul
17.
J Hum Evol ; 170: 103235, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35994845
18.
J Hum Evol ; 104: 155-173, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27839696

RESUMO

The evolutionary transition from an ape-like to human-like upper extremity occurred in the context of a behavioral shift from an upper limb predominantly involved in locomotion to one adapted for manipulation. Selection for overarm throwing and endurance running is thought to have further shaped modern human shoulder girdle morphology and its position about the thorax. Homo naledi (Dinaledi Chamber, Rising Star Cave, Cradle of Humankind, South Africa) combines an australopith-like cranial capacity with dental characteristics akin to early Homo. Although the hand, foot, and lower limb display many derived morphologies, the upper limb retains many primitive traits. Here, we describe the H. naledi upper extremity (excluding the hand) in detail and in a comparative context to evaluate the diversity of clavicular, scapular, humeral, radial, and ulnar morphology among early hominins and later Homo. Homo naledi had a scapula with a markedly cranially-oriented glenoid, a humerus with extremely low torsion, and an australopith-like clavicle. These traits indicate that the H. naledi scapula was situated superiorly and laterally on the thorax. This shoulder girdle configuration is more similar to that of Australopithecus and distinct from that of modern humans, whose scapulae are positioned low and dorsally about the thorax. Although early Homo erectus maintains many primitive clavicular and humeral features, its derived scapular morphology suggests a loss of climbing adaptations. In contrast, the H. naledi upper limb is markedly primitive, retaining morphology conducive to climbing while lacking many of the derived features related to effective throwing or running purported to characterize other members of early Homo.


Assuntos
Ossos do Braço/anatomia & histologia , Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Animais , Evolução Biológica , África do Sul
19.
J Hum Evol ; 111: 119-138, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28874266

RESUMO

Homo erectus and later humans have enlarged body sizes, reduced sexual dimorphism, elongated lower limbs, and increased encephalization compared to Australopithecus, together suggesting a distinct ecological pattern. The mosaic expression of such features in early Homo, including Homo habilis, Homo rudolfensis, and some early H. erectus, suggests that these traits do not constitute an integrated package. We examined the evidence for body mass, stature, limb proportions, body size and dental size dimorphism, and absolute and relative brain size in Homo naledi as represented in the Dinaledi Chamber sample. H. naledi stature and body mass are low compared to reported values for H. erectus, with the exception of some of the smaller bodied Dmanisi H. erectus specimens, and overlap with larger Australopithecus and early Homo estimates. H. naledi endocranial volumes (465-560 cc) and estimates of encephalization quotient are also similar to Australopithecus and low compared to all Homo specimens, with the exception of Homo floresiensis (LB1) and the smallest Dmanisi H. erectus specimen (D4500). Unlike Australopithecus, but similar to derived members of genus Homo, the Dinaledi assemblage of H. naledi exhibits both low levels of body mass and dental size variation, with an estimated body mass index of sexual dimorphism less than 20%, and appears to have an elongated lower limb. Thus, the H. naledi bauplan combines features not typically seen in Homo species (e.g., small brains and bodies) with those characteristic of H. erectus and more recent Homo species (e.g., reduced mass dimorphism, elongated lower limb).


Assuntos
Tamanho Corporal , Encéfalo/anatomia & histologia , Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Caracteres Sexuais , Animais , Evolução Biológica , Humanos , Úmero/anatomia & histologia , Tamanho do Órgão , Tíbia/anatomia & histologia , Dente/anatomia & histologia
20.
J Hum Evol ; 104: 136-154, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28094004

RESUMO

Hominin evolution featured shifts from a trunk shape suitable for climbing and housing a large gut to a trunk adapted to bipedalism and higher quality diets. Our knowledge regarding the tempo, mode, and context in which these derived traits evolved has been limited, based largely on a small-bodied Australopithecus partial skeleton (A.L. 288-1; "Lucy") and a juvenile Homo erectus skeleton (KNM-WT 15000; "Turkana Boy"). Two recent discoveries, of a large-bodied Australopithecus afarensis (KSD-VP-1/1) and two Australopithecus sediba partial skeletons (MH1 and MH2), have added to our understanding of thorax evolution; however, little is known about thorax morphology in early Homo. Here we describe hominin vertebrae, ribs, and sternal remains from the Dinaledi chamber of the Rising Star cave system attributed to Homo naledi. Although the remains are highly fragmented, the best-preserved specimens-two lower thoracic vertebrae and a lower rib-were found in association and belong to a small-bodied individual. A second lower rib may belong to this individual as well. All four of these individual elements are amongst the smallest known in the hominin fossil record. H. naledi is characterized by robust, relatively uncurved lower ribs and a relatively large spinal canal. We expect that the recovery of additional material from Rising Star Cave will clarify the nature of these traits and shed light on H. naledi functional morphology and phylogeny.


Assuntos
Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Costelas/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Animais , Evolução Biológica , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA