Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Japonês | MEDLINE | ID: mdl-30787223

RESUMO

PURPOSE: The dosimetric error due to immobilization devices has been highlighted by the AAPM Task Group 176. We developed a novel low-radiation-absorbent immobilization adaptor (HMA), which can be used with a Styrofoam headrest for head and neck region in radiotherapy. The purpose of this study was to investigate the impact of the HMA on the dose distribution and compare with a commercially released plastic adapter. METHODS: Computed tomography (CT) simulation and dose calculation on a treatment planning system (TPS) were performed by the use of HMA and the plastic adapter with a cylindrical phantom. Both the adapters were placed on the phantom upside and the attenuation rate was measured. Gantry angles were changed at every 1°interval from 0°to 50°for measurements. The measured dose was normalized by the value of 90°. The treatment equipment was TrueBeam (Varian medical systems); X-ray energies were set on 4, 6 and 10 MV, respectively. The measured attenuation rates were also compared with calculation results of TPS. RESULTS: The highest differences on attenuation rate of both the adapters were observed at a gantry angle of 32.0°; the differences were 3.0% at 4 MV, 2.7% at 6 MV and 3.0% at 10 MV, respectively, and lower absorption was HMA. TPS calculation results of monitor unit for the HMA were within 1.0% in each energy. CONCLUSION: The HMA was able to provide absorption dose and calculation errors lower than a commercially released adapter. It can also provide more accurate dose delivery for radiotherapy in head and neck because of the low absorption characteristics.


Assuntos
Neoplasias de Cabeça e Pescoço , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica
2.
J Appl Clin Med Phys ; 18(3): 44-51, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28383157

RESUMO

We developed a novel low-radiation-absorbent lok-bar (HM-bar) that is used to secure the immobilizers to the couch. The aim of this study was to investigate the X-ray scattering and absorption properties of the HM-bar in computed tomography (CT) simulation and radiotherapy dose delivery using the Varian Exact™ lok-bar (VL-bar) as a benchmark. CT images were obtained with or without lok-bar, and then each image was visually evaluated for artifacts. The attenuation rates for each lok-bar were measured using a farmer-type ionization chamber (PTW30013) and the I'mRT phantom (IBA Dosimetry GmbH). Measurement points were between gantry angles of 110 and 180°. The treatment apparatus was a NovalisTx (Brainlab AG); X-ray energies were set at 6 MV and 10 MV. In the presence of each lok-bar, the radiation dose was measured in accordance with 10 volumetric modulated arc therapy-stereotactic body radiation therapy (VMAT-SBRT) plans for lung cancer. Artifacts were seldom observed in the CT scans of the HM-bar. The attenuation rate of each lok-bar was higher when the X-ray energy was set at 6 MV than at 10 MV. The highest attenuation rate in the VL-bar was observed at a gantry angle of 112°; the rates were 22.4% at 6 MV and 19.3% at 10 MV. Similarly, the highest attenuation rate for the HM-bar was also observed at a gantry angle of 112°; the rates were 12.2% and 10.1% at 6 MV and 10 MV, respectively. When the VL-bar was evaluated, the isocenter dose of the VMAT-SBRT plans was attenuated by 2.6% as a maximum case. In the case of the HM-bar, the maximum attenuation was 1.4%. In the measurements of each VMAT-SBRT plan, the difference of the dose attenuation rate between the VL-bar and HM-bar was approximately 1%. The HM-bar could be used to minimize the occurrence of artifacts and provide good images in CT scans regarding radiotherapy planning and dose calculation. It can be used for patient therapy at hospitals to provide accurate dose delivery because of its low X-ray scattering and absorption characteristics.


Assuntos
Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos , Espalhamento de Radiação , Benchmarking , Humanos , Imagens de Fantasmas , Radiocirurgia/instrumentação , Dosagem Radioterapêutica , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA