Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 42(10): 1679-1688, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31582656

RESUMO

Targeted drug delivery system (DDS) is required for RNA interference (RNAi) therapy to increase the therapeutic effect and to reduce the adverse effect. Especially in transthyretin (TTR)-related amyloidosis, hepatocyte specific delivery is desired because TTR mainly expresses in hepatocyte. Herein, we report on a hepatocyte-specific small interfering RNA (siRNA) delivery system using polyethylene glycol (PEG)-modified lactosylated dendrimer (generation 3; G3) conjugates with α-cyclodextrin (PEG-LαCs (G3)) for TTR-related amyloidosis therapy, and investigated the in vitro and in vivo gene silencing effect of PEG-LαCs (G3)/siRNA polyplexes. PEG-LαC (G3, average degree of substitution of PEG (DSP) 2)/TTR siRNA (siTTR) polyplex exhibited the asialoglycoprotein receptor (ASGPR)-mediated cellular uptake, high endosomal escaping ability and localization of the siRNA in cytoplasm, resulting in significant TTR silencing in HepG2 cells. In vivo studies showed that PEG-LαC (G3, DSP2)/siTTR polyplex led to a significant TTR silencing effect in liver after systemic administration to mice. Furthermore, safety evaluation revealed that PEG-LαC (G3, DSP2)/siTTR polyplex had no significant toxicity both in vitro and in vivo. These findings suggest the utility of PEG-LαC (G3, DSP2) as a promising hepatocyte-specific siRNA delivery system both in vitro and in vivo, and as a therapeutic approach for TTR-related amyloidosis.


Assuntos
Neuropatias Amiloides Familiares/tratamento farmacológico , Ciclodextrinas/administração & dosagem , Dendrímeros/administração & dosagem , Hepatócitos/metabolismo , Polietilenoglicóis/administração & dosagem , Pré-Albumina/genética , RNA Interferente Pequeno/administração & dosagem , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/metabolismo , Animais , Dendrímeros/farmacocinética , Células Hep G2 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Polietilenoglicóis/farmacocinética , Pré-Albumina/metabolismo , RNA Interferente Pequeno/farmacocinética
2.
Biol Pharm Bull ; 41(12): 1737-1744, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30504675

RESUMO

Transthyretin (TTR) amyloidosis, also known as transthyretin-related familial amyloidotic polyneuropathy (ATTR-FAP), is a fatal hereditary systemic amyloidosis caused by mutant forms of TTR. Although conventional treatments for ATTR-FAP, such as liver transplantation (LT) and TTR tetramer stabilizer, reportedly halt the progression of clinical manifestation, these therapies have several limitations. Oligonucleotide-based therapy, e.g. small interfering RNA (siRNA)- and antisense oligonucleotides (ASOs)-based therapy, hold enormous potential for the treatment of intractable diseases such as ATTR-FAP, by specifically regulating the gene responsible for the disease. Clinical evidence strongly suggests that LT inhibits mutant TTR production, thus improving the manifestation of ATTR-FAP. Therefore, an oligonucleotide-based therapy for ATTR-FAP, which reduces the production of TTR by the liver, has recently been developed in preclinical and clinical studies. This review focuses on recent advances in oligonucleotide-based therapy and future prospects of next-generation oligonucleotide-based drugs for therapeutic use against ATTR-FAP.


Assuntos
Neuropatias Amiloides Familiares/tratamento farmacológico , Oligonucleotídeos Antissenso/uso terapêutico , Pré-Albumina/genética , RNA Interferente Pequeno/uso terapêutico , Neuropatias Amiloides Familiares/genética , Animais , Ensaios Clínicos como Assunto , Edição de Genes/métodos , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Mutação , Oligonucleotídeos Antissenso/administração & dosagem , Pré-Albumina/biossíntese , RNA Interferente Pequeno/administração & dosagem
3.
Environ Sci Technol ; 47(24): 14367-75, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24245550

RESUMO

Cells recognize the biomolecular corona around a nanoparticle, but the biological identity of the complex may be considerably different among various species. This study explores the importance of protein corona composition for nanoparticle recognition by coelomocytes of the earthworm Eisenia fetida using E. fetida coelomic proteins (EfCP) as a native repertoire and fetal bovine serum (FBS) as a non-native reference. We have profiled proteins forming the long-lived corona around silver nanoparticles (75 nm OECD reference materials) and compared the responses of coelomocytes to protein coronas preformed of EfCP or FBS. We find that over time silver nanoparticles can competitively acquire a biological identity native to the cells in situ even in non-native media, and significantly greater cellular accumulation of the nanoparticles was observed with corona complexes preformed of EfCP (p < 0.05). An EfCP-nanoparticle mimicry made with a recombinant protein, lysenin, revealed its critical contribution in the observed cell-nanoparticle response. This confirms the determinant role of the recognizable biological identity during invertebrate in vitro testing of nanoparticles. Our finding shows a case of species-specific formation of biomolecular coronas, and this suggests that the use of representative species may need careful consideration in assessing the risks associated with nanoparticles.


Assuntos
Comunicação Celular , Nanopartículas/química , Oligoquetos/citologia , Proteínas/química , Animais , Bovinos , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Humanos , Peso Molecular , Oligoquetos/metabolismo , Proteínas/metabolismo , Prata/química , Especificidade da Espécie , Toxinas Biológicas/química
4.
Ecotoxicol Environ Saf ; 98: 219-26, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24041528

RESUMO

The molecular mechanism of silver nanoparticle (AgNP) toxicity, particularly its temporal aspect, is currently limited in the literature. This study seeks to identify and profile changes in molecular response patterns over time during soil exposure of the earthworm Eisenia fetida to AgNPs (82±27 nm) with reference to dissolved silver salt (AgNO3). Principal component analysis of selected gene and enzyme response profiles revealed dissimilar patterns between AgNO3 and AgNP treatments and also over time. Despite the observed difference in molecular profiles, the body burdens of total Ag were within the same range (10-40 mg/kg dry weight worm) for both treatments with apparent correlation to the induction pattern of metallothionein. AgNO3 induced the genes and enzymes related to oxidative stress at day 1, after which markers of energy metabolism were all suppressed at day 2. Exposure to AgNPs likewise led to induction of oxidative stress genes at day 2, but with a temporal pattern shift to immune genes at day 14 following metabolic upregulation at day 7. The involvement of oxidative stress and subsequent alterations in immune gene regulation were as predicted by our in vitro study reported previously, highlighting the importance of immunological endpoints in nanosilver toxicity.


Assuntos
Nanopartículas Metálicas/toxicidade , Oligoquetos/efeitos dos fármacos , Estresse Oxidativo , Prata/toxicidade , Poluentes do Solo/toxicidade , Animais , Regulação da Expressão Gênica , Metalotioneína/biossíntese , Oligoquetos/imunologia , Oligoquetos/metabolismo , Análise de Componente Principal , Nitrato de Prata/toxicidade , Solo , Fatores de Tempo , Regulação para Cima
5.
Mol Pharm ; 9(6): 1645-53, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22510029

RESUMO

To reveal the potential use of lactosylated-dendrimer (G3) conjugates with α-cyclodextrin (Lac-α-CDE (G3)) as novel hepatocyte-specific siRNA carriers in order to treat transthyretin (TTR)-related familial amyloidotic polyneuropathy (FAP), we evaluated the RNAi effect of siRNA complexes with Lac-α-CDE (G3) both in vitro and in vivo. Herein, we targeted TTR gene expression because TTR-related FAP was often caused by amyloidogenic TTR (ATTR), which mainly expresses in hepatocytes. Lac-α-CDE (G3, average degree of substitution of lactose (DSL) 1.2)/siRNA complex had a potent RNAi effect against TTR gene expression through adequate physicochemical properties, asialoglycoprotein receptor (ASGP-R)-mediated cellular uptake, efficient endosomal escape and the delivery of the siRNA complex to cytoplasm, but not nucleus, with negligible cytotoxicity. Lac-α-CDE (G3, DSL 1.2)/siRNA complex had the potential to induce the in vivo RNAi effect after intravenous administration in the liver of mice. The blood chemistry values in the α-CDE (G3) and Lac-α-CDE (G3, DSL 1.2) systems were almost equivalent to those in the control system (5% mannitol solution). Taken together, these results suggest that Lac-α-CDE (G3, DSL 1.2) has the potential for a novel hepatocyte-selective siRNA carrier in vitro and in vivo, and has a possibility as a therapeutic tool for FAP to the liver transplantation.


Assuntos
Neuropatias Amiloides Familiares/terapia , Dendrímeros/química , Vetores Genéticos/química , Hepatócitos/metabolismo , Lactose/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , alfa-Ciclodextrinas/química , Neuropatias Amiloides Familiares/metabolismo , Animais , Western Blotting , Citometria de Fluxo , Vetores Genéticos/administração & dosagem , Células Hep G2 , Humanos , Masculino , Camundongos , Microscopia de Fluorescência , Pré-Albumina/genética , Pré-Albumina/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
6.
Environ Sci Technol ; 46(7): 4166-73, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22432789

RESUMO

Little is known about the potential threats of silver nanoparticles (AgNPs) to ecosystem health, with no detailed report existing on the stress and immune responses of soil invertebrates. Here we use earthworm primary cells, cross-referencing to human cell cultures with a particular emphasis on the conserved biological processes, and provide the first in vitro analysis of molecular and cellular toxicity mechanisms in the earthworm Eisenia fetida exposed to AgNPs (83 ± 22 nm). While we observed a clear difference in cytotoxicity of dissolved silver salt on earthworm coelomocytes and human cells (THP-1 cells, differentiated THP-1 cells and peripheral blood mononuclear cells), the coelomocytes and differentiated (macrophage-like) THP-1 cells showed a similar response to AgNPs. Intracellular accumulation of AgNPs in the coelomocytes, predominantly in a phagocytic population, was evident by several methods including transmission electron microscopy. Molecular signatures of oxidative stress and selected biomarker genes probed in a time-resolved manner suggest early regulation of oxidative stress genes and subsequent alteration of immune signaling processes following the onset of AgNP exposure in the coelomocytes and THP-1 cells. Our findings provide mechanistic clues on cellular innate immunity toward AgNPs that is likely to be evolutionarily conserved across the animal kingdom.


Assuntos
Evolução Biológica , Imunidade/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Oligoquetos/efeitos dos fármacos , Oligoquetos/imunologia , Prata/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade/genética , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Nanopartículas Metálicas/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética , Fatores de Tempo
7.
ACS Appl Mater Interfaces ; 14(36): 40599-40611, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36052562

RESUMO

Amyloidosis pathologically proceeds via production of amyloidogenic proteins by organs, formation of protein aggregates through structural changes, and their deposition on tissues. A growing body of evidence demonstrates that amyloidosis generally develops through three critical pathological steps: (1) production of amyloid precursor proteins, (2) amyloid formation, and (3) amyloid deposition. However, no clinically effective therapy that is capable of targeting each pathological step of amyloidosis independently is currently available. Here, we combined therapeutic effects and developed a short hairpin RNA expression vector (shRNA) complex with a cyclodextrin-appended cationic dendrimer (CDE) as a novel multitarget therapeutic drug that is capable of simultaneously suppressing these three steps. We evaluated its therapeutic effects on systemic transthyretin (ATTR) amyloidosis and Alzheimer's disease (AD) as localized amyloidosis, by targeting TTR and amyloid ß, respectively. CDE/shRNA exhibited RNAi effects to suppress amyloid protein production and also achieved both inhibition of amyloid formation and disruption of existing amyloid fibrils. The multitarget therapeutic effects of CDE/shRNA were confirmed by evaluating TTR deposition reduction in early- and late-onset human ATTR amyloidosis model rats and amyloid ß deposition reduction in AppNL-G-F/NL-G-F AD model mice. Thus, the CDE/shRNA complex exhibits multifunctional therapeutic efficacy and may reveal novel strategies for establishing curative treatments for both systemic and localized amyloidosis.


Assuntos
Doença de Alzheimer , Amiloidose , Ciclodextrinas , Dendrímeros , Doença de Alzheimer/tratamento farmacológico , Amiloide , Peptídeos beta-Amiloides , Proteínas Amiloidogênicas , Amiloidose/tratamento farmacológico , Amiloidose/metabolismo , Animais , Ciclodextrinas/farmacologia , Dendrímeros/farmacologia , Humanos , Camundongos , RNA Interferente Pequeno , Ratos
8.
AMB Express ; 11(1): 90, 2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34146179

RESUMO

Screening of gene-specific amplicons from metagenomes (S-GAM) is an efficient technique for the isolation of homologous genes from metagenomes. Using the S-GAM approach, we targeted multi-copper oxidase (MCO) genes including laccase and bilirubin oxidase (BOX) in soil and compost metagenomes, and successfully isolated novel MCO core regions. These core enzyme genes shared approximately 70% identity with that of the putative MCO from Micromonospora sp. MP36. According to the principle of S-GAM, the N- and C-terminal regions of the deduced products of the mature gene come from the known parent gene, which should be homologous and compatible with the target gene. We constructed two different MCO hybrid genes using Bacillus subtilis BOX and Micromonospora sp. MP36 MCO, to give Bs-mg-mco and Mic-mg-mco, respectively. The constructed chimeric MCO genes were fused with the maltose-binding protein (MBP) gene at the N-terminus for expression in Escherichia coli cells. We found that MBP-Mic-mg-MCO/Mic-mg-MCO possessed the characteristic properties of laccase, although MBP-Bs-mg-MCO had no activity. This novel laccase (Mic-mg-MCO) demonstrated unique substrate specificity, sufficient activity at neutral pH, and high thermal stability, which are suitable properties for its use as a laccase biocatalyst.

9.
Chem Commun (Camb) ; 56(53): 7237-7240, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32495781

RESUMO

Surface modification effects of graphite and organic solvents on Ti were investigated by thermogravimetry (TG), Raman spectroscopy, and transmission electron microscopy (TEM) observations to improve its hydrogen absorption properties. As a result, Ti ball-milled with graphite showed high reactivity and selectivity for hydrogen with high durability.

10.
Biology (Basel) ; 9(10)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977601

RESUMO

Earthworms and leeches are sentinel animals that represent the annelid phylum within terrestrial and freshwater ecosystems, respectively. One early stress signal in these organisms is related to innate immunity, but how nanomaterials affect it is poorly characterized. In this survey, we compare the latest literature on earthworm and leeches with examples of their molecular/cellular responses to inorganic (silver nanoparticles) and organic (carbon nanotubes) nanomaterials. A special focus is placed on the role of annelid immunocytes in the evolutionarily conserved antioxidant and immune mechanisms and protein corona formation and probable endocytosis pathways involved in nanomaterial uptake. Our summary helps to realize why these environmental sentinels are beneficial to study the potential detrimental effects of nanomaterials.

11.
ACS Nano ; 14(8): 10666-10679, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32806026

RESUMO

Nanoparticles can acquire a biomolecular corona with a species-specific biological identity. However, "non-self" incompatibility of recipient biological systems is often not considered, for example, when rodents are used as a model organism for preclinical studies of biomolecule-inspired nanomedicines. Using zebrafish embryos as an emerging model for nanobioimaging, here we unravel the in vivo fate of intravenously injected 70 nm SiO2 nanoparticles with a protein corona preformed from fetal bovine serum (FBS), representing a non-self biological identity. Strikingly rapid sequestration and endolysosomal acidification of nanoparticles with the preformed FBS corona were observed in scavenger endothelial cells within minutes after injection. This led to loss of blood vessel integrity and to inflammatory activation of macrophages over the course of several hours. As unmodified nanoparticles or the equivalent dose of FBS proteins alone failed to induce the observed pathophysiology, this signifies how the corona enriched with a differential repertoire of proteins can determine the fate of the nanoparticles in vivo. Our findings thus reveal the adverse outcome triggered by incompatible protein coronas and indicate a potential pitfall in the use of mismatched species combinations during nanomedicine development.


Assuntos
Nanopartículas , Coroa de Proteína , Animais , Células Endoteliais , Dióxido de Silício , Peixe-Zebra
12.
Nat Commun ; 11(1): 4535, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913217

RESUMO

The current understanding of the biological identity that nanoparticles may acquire in a given biological milieu is mostly inferred from the hard component of the protein corona (HC). The composition of soft corona (SC) proteins and their biological relevance have remained elusive due to the lack of analytical separation methods. Here, we identify a set of specific corona proteins with weak interactions at silica and polystyrene nanoparticles by using an in situ click-chemistry reaction. We show that these SC proteins are present also in the HC, but are specifically enriched after the capture, suggesting that the main distinction between HC and SC is the differential binding strength of the same proteins. Interestingly, the weakly interacting proteins are revealed as modulators of nanoparticle-cell association mainly through their dynamic nature. We therefore highlight that weak interactions of proteins at nanoparticles should be considered when evaluating nano-bio interfaces.


Assuntos
Nanopartículas/química , Coroa de Proteína/química , Química Click , Reagentes de Ligações Cruzadas/química , Células Endoteliais , Humanos , Poliestirenos/química , Ligação Proteica , Coroa de Proteína/análise , Dióxido de Silício/química , Células THP-1
13.
ACS Nano ; 14(2): 1665-1681, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31922724

RESUMO

Despite the common knowledge that the reticuloendothelial system is largely responsible for blood clearance of systemically administered nanoparticles, the sequestration mechanism remains a "black box". Using transgenic zebrafish embryos with cell type-specific fluorescent reporters and fluorescently labeled model nanoparticles (70 nm SiO2), we here demonstrate simultaneous three-color in vivo imaging of intravenously injected nanoparticles, macrophages, and scavenger endothelial cells (SECs). The trafficking processes were further revealed at ultrastructural resolution by transmission electron microscopy. We also find, using a correlative light-electron microscopy approach, that macrophages rapidly sequester nanoparticles via membrane adhesion and endocytosis (including macropinocytosis) within minutes after injection. In contrast, SECs trap single nanoparticles via scavenger receptor-mediated endocytosis, resulting in gradual sequestration with a time scale of hours. Inhibition of the scavenger receptors prevented SECs from accumulating nanoparticles but enhanced uptake in macrophages, indicating the competitive nature of nanoparticle clearance in vivo. To directly quantify the relative contributions of the two cell types to overall nanoparticle sequestration, the differential sequestration kinetics was studied within the first 30 min post-injection. This revealed a much higher and increasing relative contribution of SECs, as they by far outnumber macrophages in zebrafish embryos, suggesting the importance of the macrophage:SECs ratio in a given tissue. Further characterizing macrophages on their efficiency in nanoparticle clearance, we show that inflammatory stimuli diminish the uptake of nanoparticles per cell. Our study demonstrates the strength of transgenic zebrafish embryos for intravital real-time and ultrastructural imaging of nanomaterials that may provide mechanistic insights into nanoparticle clearance in rodent models and humans.


Assuntos
Células Endoteliais/química , Macrófagos/química , Nanopartículas/metabolismo , Dióxido de Silício/metabolismo , Animais , Células Endoteliais/metabolismo , Cinética , Macrófagos/metabolismo , Nanopartículas/química , Tamanho da Partícula , Dióxido de Silício/química , Propriedades de Superfície , Fatores de Tempo , Peixe-Zebra/embriologia
14.
Chem Commun (Camb) ; (3): 392-4, 2008 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-18399218

RESUMO

The phenoxo-based dinucleating ligand, 2,6-bis[bis(6-pivalamido-2-pyridylmethyl)amino-methyl-4-aminophenol (1), and its Fe2(II) complex, [Fe2(II)(1)(PhCOO)2](CF3SO3) (2), were prepared and 2 deposited on the Au surface (2/Au) is much more stable than in solution and exhibits redox behavior in aqueous media as well as reversible adsorption/desorption of oxygen at room temperature.

15.
Int J Biol Macromol ; 107(Pt A): 1113-1121, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28964842

RESUMO

In this study, we newly developed the ternary complexes consisting of lactosylated dendrimer (generation 3)/α-cyclodextrin conjugate (Lac-α-CDE), siRNA and the anionic polysaccharide sacrans, and evaluated their utility as siRNA transfer carriers. Three kinds of the low-molecular-weight sacrans, i.e. sacran (100) (Mw 44,889Da), sacran (1000) (Mw 943,692Da) and sacran (10,000) (Mw 1,488,281Da) were used. Lac-α-CDE/siRNA/sacran ternary complexes were prepared by adding the low-molecular-weight sacrans to the Lac-α-CDE/siRNA binary complex solution. Cellular uptake of the ternary complex with sacran (100) was higher than that of the binary complex or the other ternary complexes with sacran (1000) and sacran (10,000) in HepG2 cells. Additionally, the ternary complex possessed high serum resistance and endosomal escaping ability in HepG2 cells. High liver levels of siRNA and Lac-α-CDE were observed after the intravenous administration of the ternary complex rather than that of the binary complex. Moreover, intravenous administration of the ternary complex (siRNA 5mg/kg) induced the significant RNAi effect in the liver of mice with negligible change of blood chemistry values. Therefore, a ternary complexation of the Lac-α-CDE/siRNA binary complex with sacran is useful as a hepatocyte-specific siRNA delivery system.


Assuntos
Ciclodextrinas/química , Dendrímeros/química , Polissacarídeos/química , RNA Interferente Pequeno/química , Animais , Ciclodextrinas/genética , Dendrímeros/farmacologia , Portadores de Fármacos , Técnicas de Transferência de Genes , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Lactose/química , Camundongos , Polissacarídeos/genética , Polissacarídeos/farmacologia , RNA Interferente Pequeno/genética , Fatores de Complexo Ternário/química , Fatores de Complexo Ternário/genética
16.
Sci Rep ; 7(1): 8957, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827668

RESUMO

Despite the development of antiretroviral therapy against HIV, eradication of the virus from the body, as a means to a cure, remains in progress. A "kick and kill" strategy proposes "kick" of the latent HIV to an active HIV to eventually be "killed". Latency-reverting agents that can perform the "kick" function are under development and have shown promise. Management of the infected cells not to produce virions after the "kick" step is important to this strategy. Here we show that a newly synthesized compound, L-HIPPO, captures the HIV-1 protein Pr55Gag and intercepts its function to translocate the virus from the cytoplasm to the plasma membrane leading to virion budding. The infecting virus thus "locked-in" subsequently induces apoptosis of the host cells. This "lock-in and apoptosis" approach performed by our novel compound in HIV-infected cells provides a means to bridge the gap between the "kick" and "kill" steps of this eradication strategy. By building upon previous progress in latency reverting agents, our compound appears to provide a promising step toward the goal of HIV eradication from the body.


Assuntos
Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/farmacologia , HIV-1/fisiologia , Fosfatos de Inositol/farmacologia , Precursores de Proteínas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Fármacos Anti-HIV/química , Membrana Celular/virologia , Sobrevivência Celular/efeitos dos fármacos , Citoplasma/virologia , Erradicação de Doenças , Infecções por HIV/prevenção & controle , HIV-1/efeitos dos fármacos , HIV-1/metabolismo , Células HeLa , Humanos , Fosfatos de Inositol/síntese química , Fosfatos de Inositol/química , Células Jurkat , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Estereoisomerismo , Ativação Viral , Latência Viral/efeitos dos fármacos , Liberação de Vírus/efeitos dos fármacos
17.
Nat Commun ; 8: 13991, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28071661

RESUMO

Formation of organ-specific vasculatures requires cross-talk between developing tissue and specialized endothelial cells. Here we show how developing zebrafish spinal cord neurons coordinate vessel growth through balancing of neuron-derived Vegfaa, with neuronal sFlt1 restricting Vegfaa-Kdrl mediated angiogenesis at the neurovascular interface. Neuron-specific loss of flt1 or increased neuronal vegfaa expression promotes angiogenesis and peri-neural tube vascular network formation. Combining loss of neuronal flt1 with gain of vegfaa promotes sprout invasion into the neural tube. On loss of neuronal flt1, ectopic sprouts emanate from veins involving special angiogenic cell behaviours including nuclear positioning and a molecular signature distinct from primary arterial or secondary venous sprouting. Manipulation of arteriovenous identity or Notch signalling established that ectopic sprouting in flt1 mutants requires venous endothelium. Conceptually, our data suggest that spinal cord vascularization proceeds from veins involving two-tiered regulation of neuronal sFlt1 and Vegfaa via a novel sprouting mode.


Assuntos
Neurônios/fisiologia , Medula Espinal/embriologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Veias/embriologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Biomarcadores/metabolismo , Embrião não Mamífero/citologia , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Neovascularização Fisiológica , Receptores Notch/genética , Receptores Notch/metabolismo , Medula Espinal/irrigação sanguínea , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Veias/metabolismo , Proteínas de Peixe-Zebra/genética
18.
Dalton Trans ; 45(39): 15679-15683, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27711845

RESUMO

Three spiro(dipyridinogermole)(dithienogermole) derivatives (1-3), including newly prepared spiro(dipyridinogermole)[di(2-pyridyl)dithienogermole] (3), were examined as photosensitizers for singlet oxygen (1O2) generation in dichloromethane-methanol. Irradiation of their air-saturated solutions led to the generation of 1O2, which was readily trapped by well-known scavengers, dihydronaphthoquinone (DHN) and diphenylisobenzofuran (DPBF). Spiro(dipyridinogermole)[bis(n-hexylbithiophenyl)dithienogermole] (2) showed the best performance with a first-order rate constant that was higher than that of tetraphenylporphyrin (TPP), an efficient photosensitizer for 1O2 generation. This is ascribable to the efficient intersystem crossing characteristic of the dipyridinogermole unit. The quantum yield of 1O2 generation was φΔ = 0.72 for 2, relative to that for rose bengal (RB) in methanol as reference (φΔ = 0.8).

19.
Nanotoxicology ; 10(3): 303-11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26119277

RESUMO

Previously we have identified lysenin as a key protein constituent of the secretome from Eisenia fetida coelomocytes and revealed its critical importance in priming interactions between the cells and the protein corona around nanosilver. As alterations of the protein environment can directly affect the corona composition, the extent to which nanoparticles influence the cells' protein secretion profile is of remarkable interest that has rarely acquired attention. Here, we have probed transcriptional responses of E. fetida coelomocytes to the representative nanosilver NM-300K (15 nm) in a time-dependent manner (2, 4, 8 and 24 h at a low-cytotoxic concentration), and examined the implication of the temporal changes in transcriptional profiles of secretory proteins with a particular reference to that of lysenin. NM-300K was accumulated in/at the cells and lysenin was, after transient induction, gradually suppressed over time indicating a negative feedback cycle. This may limit further enrichment of lysenin in the corona and thereby decrease the lysenin-assisted uptake of the nanoparticles. Other differentially expressed genes were those involved in metal stress (likewise in AgNO3-stressed cells) and in Toll-like receptor (TLR) signaling. This offers an intriguing perspective of the nanosilver pathophysiology in earthworms, in which the conserved pattern recognition receptor TLRs may play an effector role.


Assuntos
Nanopartículas Metálicas/toxicidade , Oligoquetos/efeitos dos fármacos , Oligoquetos/genética , Coroa de Proteína/metabolismo , Proteínas/genética , Proteínas/metabolismo , Prata/toxicidade , Animais , Perfilação da Expressão Gênica , Nanopartículas Metálicas/química , Oligoquetos/metabolismo , Prata/química , Receptores Toll-Like/metabolismo , Toxinas Biológicas/metabolismo , Transcriptoma/efeitos dos fármacos
20.
Dev Comp Immunol ; 65: 41-52, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27349970

RESUMO

Flow cytometry is a common approach to study invertebrate immune cells including earthworm coelomocytes. However, the link between light-scatter- and microscopy-based phenotyping remains obscured. Here we show, by means of light scatter-based cell sorting, both subpopulations (amoebocytes and eleocytes) can be physically isolated with good sort efficiency and purity confirmed by downstream morphological and cytochemical applications. Immunocytochemical analysis using anti-EFCC monoclonal antibodies combined with phalloidin staining has revealed antigenically distinct, sorted subsets. Screening of lectin binding capacity indicated wheat germ agglutinin (WGA) as the strongest reactor to amoebocytes. This is further evidenced by WGA inhibition assays that suggest high abundance of N-acetyl-d-glucosamine in amoebocytes. Post-sort phagocytosis assays confirmed the functional differences between amoebocytes and eleocytes, with the former being in favor of bacterial engulfment. This study has proved successful in linking flow cytometry and microscopy analysis and provides further experimental evidence of phenotypic and functional heterogeneity in earthworm coelomocyte subsets.


Assuntos
Anticorpos Monoclonais/metabolismo , Citometria de Fluxo/métodos , Microscopia/métodos , Oligoquetos/imunologia , Fagócitos/imunologia , Animais , Separação Celular , Difusão Dinâmica da Luz , Glucosamina/metabolismo , Imuno-Histoquímica , Imunofenotipagem , Lectinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA