Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Cell ; 187(17): 4656-4673.e28, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38942013

RESUMO

The ability of proteins and RNA to coalesce into phase-separated assemblies, such as the nucleolus and stress granules, is a basic principle in organizing membraneless cellular compartments. While the constituents of biomolecular condensates are generally well documented, the mechanisms underlying their formation under stress are only partially understood. Here, we show in yeast that covalent modification with the ubiquitin-like modifier Urm1 promotes the phase separation of a wide range of proteins. We find that the drop in cellular pH induced by stress triggers Urm1 self-association and its interaction with both target proteins and the Urm1-conjugating enzyme Uba4. Urmylation of stress-sensitive proteins promotes their deposition into stress granules and nuclear condensates. Yeast cells lacking Urm1 exhibit condensate defects that manifest in reduced stress resilience. We propose that Urm1 acts as a reversible molecular "adhesive" to drive protective phase separation of functionally critical proteins under cellular stress.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Estresse Fisiológico , Ubiquitinas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinas/metabolismo , Condensados Biomoleculares/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Concentração de Íons de Hidrogênio , Grânulos de Estresse/metabolismo
2.
Cell ; 183(2): 457-473.e20, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32979320

RESUMO

Rubisco, the key enzyme of CO2 fixation in photosynthesis, is prone to inactivation by inhibitory sugar phosphates. Inhibited Rubisco undergoes conformational repair by the hexameric AAA+ chaperone Rubisco activase (Rca) in a process that is not well understood. Here, we performed a structural and mechanistic analysis of cyanobacterial Rca, a close homolog of plant Rca. In the Rca:Rubisco complex, Rca is positioned over the Rubisco catalytic site under repair and pulls the N-terminal tail of the large Rubisco subunit (RbcL) into the hexamer pore. Simultaneous displacement of the C terminus of the adjacent RbcL opens the catalytic site for inhibitor release. An alternative interaction of Rca with Rubisco is mediated by C-terminal domains that resemble the small Rubisco subunit. These domains, together with the N-terminal AAA+ hexamer, ensure that Rca is packaged with Rubisco into carboxysomes. The cyanobacterial Rca is a dual-purpose protein with functions in Rubisco repair and carboxysome organization.


Assuntos
Cianobactérias/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Organelas/metabolismo , Fotossíntese/fisiologia , Ribulose-Bifosfato Carboxilase/fisiologia , Ativador de Plasminogênio Tecidual/química , Ativador de Plasminogênio Tecidual/metabolismo
3.
Cell ; 174(6): 1507-1521.e16, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30100183

RESUMO

The hetero-oligomeric chaperonin of eukarya, TRiC, is required to fold the cytoskeletal protein actin. The simpler bacterial chaperonin system, GroEL/GroES, is unable to mediate actin folding. Here, we use spectroscopic and structural techniques to determine how TRiC promotes the conformational progression of actin to the native state. We find that actin fails to fold spontaneously even in the absence of aggregation but populates a kinetically trapped, conformationally dynamic state. Binding of this frustrated intermediate to TRiC specifies an extended topology of actin with native-like secondary structure. In contrast, GroEL stabilizes bound actin in an unfolded state. ATP binding to TRiC effects an asymmetric conformational change in the chaperonin ring. This step induces the partial release of actin, priming it for folding upon complete release into the chaperonin cavity, mediated by ATP hydrolysis. Our results reveal how the unique features of TRiC direct the folding pathway of an obligate eukaryotic substrate.


Assuntos
Actinas/metabolismo , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Actinas/química , Trifosfato de Adenosina/metabolismo , Animais , Bovinos , Chaperonina 10/química , Chaperonina 60/química , Microscopia Crioeletrônica , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Medição da Troca de Deutério , Humanos , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína
4.
Cell ; 172(3): 605-617.e11, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29336887

RESUMO

The bacterial chaperonin GroEL and its cofactor, GroES, form a nano-cage for a single molecule of substrate protein (SP) to fold in isolation. GroEL and GroES undergo an ATP-regulated interaction cycle to close and open the folding cage. GroEL consists of two heptameric rings stacked back to back. Here, we show that GroEL undergoes transient ring separation, resulting in ring exchange between complexes. Ring separation occurs upon ATP-binding to the trans ring of the asymmetric GroEL:7ADP:GroES complex in the presence or absence of SP and is a consequence of inter-ring negative allostery. We find that a GroEL mutant unable to perform ring separation is folding active but populates symmetric GroEL:GroES2 complexes, where both GroEL rings function simultaneously rather than sequentially. As a consequence, SP binding and release from the folding chamber is inefficient, and E. coli growth is impaired. We suggest that transient ring separation is an integral part of the chaperonin mechanism.


Assuntos
Chaperonina 60/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/genética , Mutação , Ligação Proteica
5.
Cell ; 156(5): 975-85, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24581496

RESUMO

When exposed to proteotoxic environmental conditions, mammalian cells activate the cytosolic stress response in order to restore protein homeostasis. A key feature of this response is the heat shock transcription factor 1 (HSF1)-dependent expression of molecular chaperones. Here, we describe the results of an RNA interference screen in HeLa cells to identify modulators of stress response induction and attenuation. The modulator proteins are localized in multiple cellular compartments, with chromatin modifiers and nuclear protein quality control playing a central regulatory role. We find that the acetyltransferase, EP300, controls the cellular level of activatable HSF1. This involves acetylation of HSF1 at multiple lysines not required for function and results in stabilization of HSF1 against proteasomal turnover. Acetylation of functionally critical lysines during stress serves to fine-tune HSF1 activation. Finally, the nuclear proteasome system functions in attenuating the stress response by degrading activated HSF1 in a manner linked with the clearance of misfolded proteins.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteína p300 Associada a E1A/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Fatores de Transcrição de Choque Térmico , Resposta ao Choque Térmico , Humanos , Dobramento de Proteína , Mapas de Interação de Proteínas , Proteoma/análise , Proteoma/metabolismo
6.
Cell ; 157(4): 922-934, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24813614

RESUMO

The GroEL/ES chaperonin system functions as a protein folding cage. Many obligate substrates of GroEL share the (ßα)8 TIM-barrel fold, but how the chaperonin promotes folding of these proteins is not known. Here, we analyzed the folding of DapA at peptide resolution using hydrogen/deuterium exchange and mass spectrometry. During spontaneous folding, all elements of the DapA TIM barrel acquire structure simultaneously in a process associated with a long search time. In contrast, GroEL/ES accelerates folding more than 30-fold by catalyzing segmental structure formation in the TIM barrel. Segmental structure formation is also observed during the fast spontaneous folding of a structural homolog of DapA from a bacterium that lacks GroEL/ES. Thus, chaperonin independence correlates with folding properties otherwise enforced by protein confinement in the GroEL/ES cage. We suggest that folding catalysis by GroEL/ES is required by a set of proteins to reach native state at a biologically relevant timescale, avoiding aggregation or degradation.


Assuntos
Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Dobramento de Proteína , Sequência de Aminoácidos , Catálise , Medição da Troca de Deutério , Escherichia coli/química , Escherichia coli/enzimologia , Hidroliases/química , Hidroliases/metabolismo , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Mycoplasma synoviae/enzimologia , Mycoplasma synoviae/metabolismo , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/metabolismo , Estrutura Terciária de Proteína
7.
Mol Cell ; 81(14): 2914-2928.e7, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34107307

RESUMO

Molecular chaperones assist with protein folding by interacting with nascent polypeptide chains (NCs) during translation. Whether the ribosome can sense chaperone defects and, in response, abort translation of misfolding NCs has not yet been explored. Here we used quantitative proteomics to investigate the ribosome-associated chaperone network in E. coli and the consequences of its dysfunction. Trigger factor and the DnaK (Hsp70) system are the major NC-binding chaperones. HtpG (Hsp90), GroEL, and ClpB contribute increasingly when DnaK is deficient. Surprisingly, misfolding because of defects in co-translational chaperone function or amino acid analog incorporation results in recruitment of the non-canonical release factor RF3. RF3 recognizes aberrant NCs and then moves to the peptidyltransferase site to cooperate with RF2 in mediating chain termination, facilitating clearance by degradation. This function of RF3 reduces the accumulation of misfolded proteins and is critical for proteostasis maintenance and cell survival under conditions of limited chaperone availability.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas/fisiologia , Aminoácidos/metabolismo , Sobrevivência Celular/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Peptidil Transferases/metabolismo , Ligação Proteica/fisiologia , Dobramento de Proteína , Proteômica/métodos , Proteostase/fisiologia , Ribossomos/metabolismo
8.
Annu Rev Biochem ; 82: 323-55, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23746257

RESUMO

The biological functions of proteins are governed by their three-dimensional fold. Protein folding, maintenance of proteome integrity, and protein homeostasis (proteostasis) critically depend on a complex network of molecular chaperones. Disruption of proteostasis is implicated in aging and the pathogenesis of numerous degenerative diseases. In the cytosol, different classes of molecular chaperones cooperate in evolutionarily conserved folding pathways. Nascent polypeptides interact cotranslationally with a first set of chaperones, including trigger factor and the Hsp70 system, which prevent premature (mis)folding. Folding occurs upon controlled release of newly synthesized proteins from these factors or after transfer to downstream chaperones such as the chaperonins. Chaperonins are large, cylindrical complexes that provide a central compartment for a single protein chain to fold unimpaired by aggregation. This review focuses on recent advances in understanding the mechanisms of chaperone action in promoting and regulating protein folding and on the pathological consequences of protein misfolding and aggregation.


Assuntos
Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Proteínas/metabolismo , Proteoma/metabolismo , Deficiências na Proteostase/fisiopatologia , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/fisiologia , Proteínas/química
9.
Cell ; 154(1): 134-45, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23791384

RESUMO

Dysfunction of protein quality control contributes to the cellular pathology of polyglutamine (polyQ) expansion diseases and other neurodegenerative disorders associated with aggregate deposition. Here we analyzed how polyQ aggregation interferes with the clearance of misfolded proteins by the ubiquitin-proteasome system (UPS). We show in a yeast model that polyQ-expanded proteins inhibit the UPS-mediated degradation of misfolded cytosolic carboxypeptidase Y(∗) fused to green fluorescent protein (GFP) (CG(∗)) without blocking ubiquitylation or proteasome function. Quantitative proteomic analysis reveals that the polyQ aggregates sequester the low-abundant and essential Hsp40 chaperone Sis1p. Overexpression of Sis1p restores CG(∗) degradation. Surprisingly, we find that Sis1p, and its homolog DnaJB1 in mammalian cells, mediates the delivery of misfolded proteins into the nucleus for proteasomal degradation. Sis1p shuttles between cytosol and nucleus, and its cellular level limits the capacity of this quality control pathway. Upon depletion of Sis1p by polyQ aggregation, misfolded proteins are barred from entering the nucleus and form cytoplasmic inclusions.


Assuntos
Peptídeos/metabolismo , Dobramento de Proteína , Proteólise , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Frutose-Bifosfatase/química , Frutose-Bifosfatase/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP72/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinação
10.
Cell ; 144(1): 67-78, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21215370

RESUMO

Protein aggregation is linked with neurodegeneration and numerous other diseases by mechanisms that are not well understood. Here, we have analyzed the gain-of-function toxicity of artificial ß sheet proteins that were designed to form amyloid-like fibrils. Using quantitative proteomics, we found that the toxicity of these proteins in human cells correlates with the capacity of their aggregates to promote aberrant protein interactions and to deregulate the cytosolic stress response. The endogenous proteins that are sequestered by the aggregates share distinct physicochemical properties: They are relatively large in size and significantly enriched in predicted unstructured regions, features that are strongly linked with multifunctionality. Many of the interacting proteins occupy essential hub positions in cellular protein networks, with key roles in chromatin organization, transcription, translation, maintenance of cell architecture and protein quality control. We suggest that amyloidogenic aggregation targets a metastable subproteome, thereby causing multifactorial toxicity and, eventually, the collapse of essential cellular functions.


Assuntos
Amiloide/metabolismo , Fenômenos Fisiológicos Celulares , Proteínas/metabolismo , Linhagem Celular , Humanos , Complexos Multiproteicos , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteômica
11.
Cell ; 142(1): 112-22, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20603018

RESUMO

GroEL and GroES form a chaperonin nano-cage for single protein molecules to fold in isolation. The folding properties that render a protein chaperonin dependent are not yet understood. Here, we address this question using a double mutant of the maltose-binding protein DM-MBP as a substrate. Upon spontaneous refolding, DM-MBP populates a kinetically trapped intermediate that is collapsed but structurally disordered. Introducing two long-range disulfide bonds into DM-MBP reduces the entropic folding barrier of this intermediate and strongly accelerates native state formation. Strikingly, steric confinement of the protein in the chaperonin cage mimics the kinetic effect of constraining disulfides on folding, in a manner mediated by negative charge clusters in the cage wall. These findings suggest that chaperonin dependence correlates with the tendency of proteins to populate entropically stabilized folding intermediates. The capacity to rescue proteins from such folding traps may explain the uniquely essential role of chaperonin cages within the cellular chaperone network.


Assuntos
Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Proteínas de Escherichia coli/metabolismo , Dobramento de Proteína , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas Ligantes de Maltose , Modelos Moleculares , Proteínas Periplásmicas de Ligação/metabolismo , Rhodospirillum rubrum/metabolismo , Espectrometria de Fluorescência , Termodinâmica
12.
Mol Cell ; 67(5): 744-756.e6, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28803776

RESUMO

How AAA+ chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA+ protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair.


Assuntos
Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Plantas/metabolismo , Rhodobacter sphaeroides/enzimologia , Ribulose-Bifosfato Carboxilase/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Reagentes de Ligações Cruzadas/química , Medição da Troca de Deutério , Estabilidade Enzimática , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Subunidades Proteicas , Rhodobacter sphaeroides/genética , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética , Relação Estrutura-Atividade , Fatores de Tempo , Ativador de Plasminogênio Tecidual/química , Ativador de Plasminogênio Tecidual/genética
13.
Trends Biochem Sci ; 45(9): 748-763, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32471779

RESUMO

A major challenge faced by human civilization is to ensure that agricultural productivity keeps pace with population growth and a changing climate. All food supply is generated, directly or indirectly, through the process of photosynthesis, with the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzing the assimilation of atmospheric CO2. Despite its pivotal role, Rubisco is a remarkably inefficient enzyme and must be made by plants in large quantities. However, efforts to enhance Rubisco performance by bioengineering have been hampered by its extensive reliance on molecular chaperones and auxiliary factors for biogenesis, metabolic repair, and packaging into membraneless microcompartments. Here, we review recent advances in understanding these complex machineries and discuss their implications for improving Rubisco carboxylase activity with the goal to increase crop yields.


Assuntos
Chaperonas Moleculares , Plantas/enzimologia , Ribulose-Bifosfato Carboxilase , Chaperonas Moleculares/metabolismo , Fotossíntese , Ribulose-Bifosfato Carboxilase/metabolismo
14.
Nature ; 563(7730): 209-213, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30232455

RESUMO

Tc toxins secrete toxic enzymes into host cells using a unique syringe-like injection mechanism. They are composed of three subunits, TcA, TcB and TcC. TcA forms the translocation channel and the TcB-TcC heterodimer functions as a cocoon that shields the toxic enzyme. Binding of the cocoon to the channel triggers opening of the cocoon and translocation of the toxic enzyme into the channel. Here we show in atomic detail how the assembly of the three components activates the toxin. We find that part of the cocoon completely unfolds and refolds into an alternative conformation upon binding. The presence of the toxic enzyme inside the cocoon is essential for its subnanomolar binding affinity for the TcA subunit. The enzyme passes through a narrow negatively charged constriction site inside the cocoon, probably acting as an extruder that releases the unfolded protein with its C terminus first into the translocation channel.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Microscopia Crioeletrônica , Complexos Multiproteicos/ultraestrutura , Photorhabdus/ultraestrutura , Redobramento de Proteína , Desdobramento de Proteína , ADP Ribose Transferases/química , ADP Ribose Transferases/metabolismo , ADP Ribose Transferases/ultraestrutura , Toxinas Bacterianas/biossíntese , Citotoxinas/biossíntese , Citotoxinas/química , Citotoxinas/metabolismo , Modelos Biológicos , Modelos Moleculares , Complexos Multiproteicos/biossíntese , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Photorhabdus/química , Conformação Proteica , Transporte Proteico
15.
Mol Cell ; 63(6): 951-64, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27570076

RESUMO

Huntington's disease is one of several neurodegenerative disorders characterized by the aggregation of polyglutamine (polyQ)-expanded mutant protein. How polyQ aggregation leads to cellular dysfunction is not well understood. Here, we analyzed aberrant protein interactions of soluble oligomers and insoluble inclusions of mutant huntingtin using in-cell single molecule fluorescence spectroscopy and quantitative proteomics. We find that the interactome of soluble oligomers is highly complex, with an enrichment of RNA-binding proteins as well as proteins functioning in ribosome biogenesis, translation, transcription, and vesicle transport. The oligomers frequently target proteins containing extended low-complexity sequences, potentially interfering with key cellular pathways. In contrast, the insoluble inclusions are less interactive and associate strongly with protein quality control components, such as Hsp40 chaperones and factors of the ubiquitin-proteasome system. Our results suggest a "multiple hit" model for the pathogenic effects of mutant huntingtin, with soluble forms engaging more extensively in detrimental interactions than insoluble aggregates.


Assuntos
Proteína Huntingtina/metabolismo , Neurônios/metabolismo , Peptídeos/metabolismo , Imagem Individual de Molécula/métodos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Expressão Gênica , Ontologia Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Células HeLa , Humanos , Proteína Huntingtina/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Anotação de Sequência Molecular , Mutação , Neurônios/patologia , Peptídeos/química , Peptídeos/genética , Agregados Proteicos , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Solubilidade , Espectrometria de Fluorescência , Proteína Vermelha Fluorescente
16.
Cell ; 133(1): 142-53, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18394994

RESUMO

The GroEL/GroES chaperonin system mediates protein folding in the bacterial cytosol. Newly synthesized proteins reach GroEL via transfer from upstream chaperones such as DnaK/DnaJ (Hsp70). Here we employed single molecule and ensemble FRET to monitor the conformational transitions of a model substrate as it proceeds along this chaperone pathway. We find that DnaK/DnaJ stabilizes the protein in collapsed states that fold exceedingly slowly. Transfer to GroEL results in unfolding, with a fraction of molecules reaching locally highly expanded conformations. ATP-induced domain movements in GroEL cause transient further unfolding and rapid mobilization of protein segments with moderate hydrophobicity, allowing partial compaction on the GroEL surface. The more hydrophobic regions are released upon subsequent protein encapsulation in the central GroEL cavity by GroES, completing compaction and allowing rapid folding. Segmental chain release and compaction may be important in avoiding misfolding by proteins that fail to fold efficiently through spontaneous hydrophobic collapse.


Assuntos
Bactérias/metabolismo , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Bactérias/química , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Chaperonina 60/química , Transferência Ressonante de Energia de Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Proteínas Ligantes de Maltose , Chaperonas Moleculares , Conformação Proteica , Dobramento de Proteína
17.
Nature ; 531(7593): 191-5, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26934223

RESUMO

Translation of messenger RNAs lacking a stop codon results in the addition of a carboxy-terminal poly-lysine tract to the nascent polypeptide, causing ribosome stalling. Non-stop proteins and other stalled nascent chains are recognized by the ribosome quality control (RQC) machinery and targeted for proteasomal degradation. Failure of this process leads to neurodegeneration by unknown mechanisms. Here we show that deletion of the E3 ubiquitin ligase Ltn1p in yeast, a key RQC component, causes stalled proteins to form detergent-resistant aggregates and inclusions. Aggregation is dependent on a C-terminal alanine/threonine tail that is added to stalled polypeptides by the RQC component, Rqc2p. Formation of inclusions additionally requires the poly-lysine tract present in non-stop proteins. The aggregates sequester multiple cytosolic chaperones and thereby interfere with general protein quality control pathways. These findings can explain the proteotoxicity of ribosome-stalled polypeptides and demonstrate the essential role of the RQC in maintaining proteostasis.


Assuntos
Corpos de Inclusão/metabolismo , Agregados Proteicos , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Ubiquitina-Proteína Ligases/deficiência , Alanina/metabolismo , Códon de Terminação/genética , Corpos de Inclusão/química , Chaperonas Moleculares/metabolismo , Polilisina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregação Patológica de Proteínas , Biossíntese de Proteínas , Proteólise , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Treonina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
18.
Trends Biochem Sci ; 41(1): 62-76, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26422689

RESUMO

The bacterial chaperonin GroEL and its cofactor GroES constitute the paradigmatic molecular machine of protein folding. GroEL is a large double-ring cylinder with ATPase activity that binds non-native substrate protein (SP) via hydrophobic residues exposed towards the ring center. Binding of the lid-shaped GroES to GroEL displaces the bound protein into an enlarged chamber, allowing folding to occur unimpaired by aggregation. GroES and SP undergo cycles of binding and release, regulated allosterically by the GroEL ATPase. Recent structural and functional studies are providing insights into how the physical environment of the chaperonin cage actively promotes protein folding, in addition to preventing aggregation. Here, we review different models of chaperonin action and discuss issues of current debate.


Assuntos
Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Proteínas Mitocondriais/metabolismo , Nanoestruturas , Dobramento de Proteína , Chaperonina 10/química , Chaperonina 60/química , Humanos , Proteínas Mitocondriais/química , Modelos Moleculares
20.
Biochemistry ; 57(23): 3210-3216, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29589905

RESUMO

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), a ∼530 kDa complex of 8 large (RbcL) and 8 small subunits (RbcS), mediates the fixation of atmospheric CO2 into usable sugars during photosynthesis. Despite its fundamental role, Rubisco is a remarkably inefficient enzyme and thus is produced by plants in huge amounts. It has long been a key target for bioengineering with the goal to increase crop yields. However, such efforts have been hampered by the complex requirement of Rubisco biogenesis for molecular chaperones. Recent studies have identified an array of auxiliary factors needed for the folding and assembly of the Rubisco subunits. The folding of plant RbcL subunits is mediated by the cylindrical chloroplast chaperonin, Cpn60, and its cofactor Cpn20. Folded RbcL requires a number of additional Rubisco specific assembly chaperones, including RbcX, Rubisco accumulation factors 1 (Raf1) and 2 (Raf2), and the Bundle sheath defective-2 (BSD2), to mediate the assembly of the RbcL8 intermediate complex. Incorporation of the RbcS and displacement of the assembly factors generates the active holoenzyme. An Escherichia coli strain expressing the chloroplast chaperonin and auxiliary factors now allows the expression of functional plant Rubisco, paving the way for Rubisco engineering by large scale mutagenesis. Here, we review our current understanding on how these chaperones cooperate to produce one of the most important enzymes in nature.


Assuntos
Escherichia coli , Chaperonas Moleculares , Ribulose-Bifosfato Carboxilase , Escherichia coli/genética , Escherichia coli/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Ribulose-Bifosfato Carboxilase/biossíntese , Ribulose-Bifosfato Carboxilase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA