Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 530
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 620(7974): 545-551, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37224876

RESUMO

Doping of perovskite semiconductors1 and passivation of their grain boundaries2 remain challenging but essential for advancing high-efficiency perovskite solar cells. Particularly, it is crucial to build perovskite/indium tin oxide (ITO) Schottky contact based inverted devices without predepositing a layer of hole-transport material3-5. Here we report a dimethylacridine-based molecular doping process used to construct a well-matched p-perovskite/ITO contact, along with all-round passivation of grain boundaries, achieving a certified power conversion efficiency (PCE) of 25.39%. The molecules are shown to be extruded from the precursor solution to the grain boundaries and the bottom of the film surface in the chlorobenzene-quenched crystallization process, which we call a molecule-extrusion process. The core coordination complex between the deprotonated phosphonic acid group of the molecule and lead polyiodide of perovskite is responsible for both mechanical absorption and electronic charge transfer, and leads to p-type doping of the perovskite film. We created an efficient device with a PCE of 25.86% (reverse scan) and that maintained 96.6% of initial PCE after 1,000 h of light soaking.

2.
Nature ; 604(7907): 763-770, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418678

RESUMO

Adhesion G-protein-coupled receptors (aGPCRs) are important for organogenesis, neurodevelopment, reproduction and other processes1-6. Many aGPCRs are activated by a conserved internal (tethered) agonist sequence known as the Stachel sequence7-12. Here, we report the cryogenic electron microscopy (cryo-EM) structures of two aGPCRs in complex with Gs: GPR133 and GPR114. The structures indicate that the Stachel sequences of both receptors assume an α-helical-bulge-ß-sheet structure and insert into a binding site formed by the transmembrane domain (TMD). A hydrophobic interaction motif (HIM) within the Stachel sequence mediates most of the intramolecular interactions with the TMD. Combined with the cryo-EM structures, biochemical characterization of the HIM motif provides insight into the cross-reactivity and selectivity of the Stachel sequences. Two interconnected mechanisms, the sensing of Stachel sequences by the conserved 'toggle switch' W6.53 and the constitution of a hydrogen-bond network formed by Q7.49/Y7.49 and the P6.47/V6.47φφG6.50 motif (φ indicates a hydrophobic residue), are important in Stachel sequence-mediated receptor activation and Gs coupling. Notably, this network stabilizes kink formation in TM helices 6 and 7 (TM6 and TM7, respectively). A common Gs-binding interface is observed between the two aGPCRs, and GPR114 has an extended TM7 that forms unique interactions with Gs. Our structures reveal the detailed mechanisms of aGPCR activation by Stachel sequences and their Gs coupling.


Assuntos
Peptídeos , Receptores Acoplados a Proteínas G , Sítios de Ligação , Microscopia Crioeletrônica , Domínios Proteicos , Estrutura Secundária de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
3.
J Am Chem Soc ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916586

RESUMO

Postconsumer plastics are generally perceived as valueless with only a small portion of plastic waste being closed-loop recycled into similar products while most of them are discarded in landfills. Depositing plastic waste in landfills not only harms the environment but also signifies a substantial economic loss. Alternatively, constructing value-added chemical feedstocks via mining the waste-derived intermediate species as a carbon (C) source under mild electrochemical conditions is a sustainable strategy to realize the circular economy. This proof-of-concept work provides an attractive "turning trash to treasure" strategy by integrating electrocatalytic polyethylene terephthalate (PET) plastic upcycling with a chemical C-S coupling reaction to synthesize organosulfur compounds, hydroxymethanesulfonate (HMS). HMS can be produced efficiently (Faradaic efficiency, FE of ∼70%) via deliberately capturing electrophilic intermediates generated in the PET monomer (ethylene glycol, EG) upcycling process, followed by coupling them with nucleophilic sulfur (S) species (i.e., SO32- and HSO3-). Unlike many previous studies conducted under alkaline conditions, PET upcycling was performed over an amorphous MnO2 catalyst under near-neutral conditions, allowing for the stabilization of electrophilic intermediates. The compatibility of this strategy was further investigated by employing biomass-derived compounds as substrates. Moreover, comparable HMS yields can be achieved with real-world PET plastics, showing its enormous potential in practical application. Lastly, Density function theory (DFT) calculation reveals that the C-C cleavage step of EG is the rate-determining step (RDS), and amorphous MnO2 significantly decreases the energy barriers for both RDS and C-S coupling when compared to the crystalline counterpart.

4.
J Gene Med ; 26(1): e3660, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282145

RESUMO

The progression and the metastatic potential of colorectal cancer (CRC) are intricately linked to the epithelial-mesenchymal transition (EMT) process. The present study harnesses the power of machine learning combined with multi-omics data to develop a risk stratification model anchored on EMT-associated genes. The aim is to facilitate personalized prognostic assessments in CRC. We utilized publicly accessible gene expression datasets to pinpoint EMT-associated genes, employing a CoxBoost algorithm to sift through these genes for prognostic significance. The resultant model, predicated on gene expression levels, underwent rigorous independent validation across various datasets. Our model demonstrated a robust capacity to segregate CRC patients into distinct high- and low-risk categories, each correlating with markedly different survival probabilities. Notably, the risk score emerged as an independent prognostic indicator for CRC. High-risk patients were characterized by an immunosuppressive tumor milieu and a heightened responsiveness to certain chemotherapeutic agents, underlining the model's potential in steering tailored oncological therapies. Moreover, our research unearthed a putative repressive interaction between the long non-coding RNA PVT1 and the EMT-associated genes TIMP1 and MMP1, offering new insights into the molecular intricacies of CRC. In essence, our research introduces a sophisticated risk model, leveraging machine learning and multi-omics insights, which accurately prognosticates outcomes for CRC patients, paving the way for more individualized and effective oncological treatment paradigms.


Assuntos
Neoplasias Colorretais , Multiômica , Humanos , Prognóstico , Transição Epitelial-Mesenquimal/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Aprendizado de Máquina
5.
Small ; 20(23): e2307309, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38150611

RESUMO

Ferroptosis is associated with the occurrence and development of many diseases, which is the result of an imbalance in cellular metabolism and oxidation-reduction balance. Therefore, it is an effective therapeutic strategy that simultaneously regulating the intracellular oxidation-reduction system. Herein, a click reaction of alkynylamide with thiol groups in the presence of amine or in PBS (pH = 7.4) is developed, which can react efficiently with thiol substances, such as cysteine (Cys), glutathione (GSH), and bovine serum albumin (BSA). Notably, MBTB-PA, an aggregation-induced emission (AIE) photosensitizer with an alkynylamide unit, is synthesized and its intracellular behavior is visualized in situ by fluorescence imaging, demonstrating its excellent ability to target the endoplasmic reticulum. Furthermore, MBTB-PA reacted with proteins in tumor cells, consumed reducing substances, and triggered intracellular oxidative stress, resulting in cell death. Based on this reaction therapy strategy, click reaction is combined with photodynamic therapy to achieve effective killing of tumor cells by simultaneously raising the intracellular oxidative state and reducing the reductive state. This work not only develops an application of click reaction of alkynamide with thiol in bioconjugation and anti-tumor therapy, but also provides feasible ideas for organic reactions in the exploration of organisms.


Assuntos
Química Click , Compostos de Sulfidrila , Compostos de Sulfidrila/química , Humanos , Linhagem Celular Tumoral , Animais , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
6.
Gastrointest Endosc ; 99(3): 387-397.e6, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37858760

RESUMO

BACKGROUND AND AIMS: The Zhongshan colorectal endoscopic submucosal dissection (CR-ESD) score model was proposed to grade the technical difficulty of CR-ESD. The objective of this study was to prospectively validate and update the score model. METHODS: A multicenter prospective cohort analysis of CR-ESD was conducted. Individual data on patients, lesions, and outcomes of CR-ESD were used to validate the original model and further refine the difficulty of the prediction model. Data were randomly divided into discovery and internal validation cohorts. A multivariate Cox regression analysis was conducted on the discovery cohort to develop an updated risk-scoring system, which was then validated. RESULTS: Five hundred forty-eight patients with 565 colorectal lesions treated by ESD from 4 hospitals were included. In the prospective validation cohort, the area under the receiver-operating characteristic (ROC) curve for the original model was .707. Six risk factors were identified and assigned point values: tumor size (2 points for 30-50 mm, 3 points for ≥50 mm), at least two-thirds circumference of the lesion (3 points), tumor location in the cecum (2 points) or flexure (2 points), laterally spreading tumor-nongranular lesions (1 point), preceding biopsy sampling (1 point), and NBI International Colorectal Endoscopic type 3 (3 points). The updated model had an area under the ROC curve of .738 in the discovery cohort and of .782 in the validation cohort. Cases were categorized into easy (score = 0-1), intermediate (score = 2-3), difficult (score = 4-6), and very difficult (score ≥7) groups. Satisfactory discrimination and calibration were observed. CONCLUSIONS: The original model achieved an acceptable level of prediction in the prospective cohort. The updated model exhibited superior performance and can be used in place of the previous version. (Clinical trial registration number: ChiCTR2100047087.).


Assuntos
Neoplasias Colorretais , Ressecção Endoscópica de Mucosa , Humanos , Ressecção Endoscópica de Mucosa/efeitos adversos , Neoplasias Colorretais/patologia , Estudos Prospectivos , Estudos Retrospectivos , Estudos de Coortes , Resultado do Tratamento
7.
Pharmacol Res ; 204: 107189, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649124

RESUMO

Spinal cord injury (SCI) is a complex problem in modern medicine. Fibroblast activation and fibroscarring after SCI impede nerve recovery. Non-coding RNA plays an important role in the progression of many diseases, but the study of its role in the progression of spinal fibrosis is still emerging. Here, we investigated the function of circular RNAs, specifically antisense to the cerebellar degeneration-related protein 1 (CDR1as), in spinal fibrosis and characterized its molecular mechanism and pathophysiology. The presence of CDR1as in the spinal cord was verified by sequencing and RNA expression assays. The effects of inhibition of CDR1as on scar formation, inflammation and nerve regeneration after spinal cord injury were investigated in vivo and in vitro. Further, gene expression of miR-7a-5p and protein expression of transforming Growth Factor Beta Receptor II (TGF-ßR2) were measured to evaluate their predicted interactions with CDR1as. The regulatory effects and activation pathways were subsequently verified by miR-7a-5p inhibitor and siCDR1as. These results indicate that CDR1as/miR-7a-5p/TGF-ßR2 interactions may exert scars and nerves functions and suggest potential therapeutic targets for treating spinal fibrotic diseases.


Assuntos
Fibrose , MicroRNAs , RNA Circular , RNA Longo não Codificante , Transdução de Sinais , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/fisiopatologia , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Proteínas Smad/metabolismo , Proteínas Smad/genética , Regeneração Nervosa , Feminino , Masculino , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Camundongos Endogâmicos C57BL , Camundongos , Recuperação de Função Fisiológica
8.
Am J Bot ; 111(4): e16311, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38571288

RESUMO

PREMISE: Previous work searching for sexual dimorphism has largely relied on the comparison of trait mean vectors between sexes in dioecious plants. Whether trait scaling (i.e., the ratio of proportional changes in covarying traits) differs between sexes, along with its functional significance, remains unclear. METHODS: We measured 10 vegetative traits pertaining to carbon, water, and nutrient economics across 337 individuals (157 males and 180 females) of the diocious species Eurya japonica during the fruiting season in eastern China. Piecewise structural equation modeling was employed to reveal the scaling relationships of multiple interacting traits, and multivariate analysis of (co)variance was conducted to test for intersexual differences. RESULTS: There was no sexual dimorphism in terms of trait mean vectors across the 10 vegetative traits in E. japonica. Moreover, most relationships for covarying trait pairs (17 out of 19) exhibited common scaling slopes between sexes. However, the scaling slopes for leaf phosphorus (P) vs. nitrogen (N) differed between sexes, with 5.6- and 3.0-fold increases of P coinciding with a 10-fold increase of N in male and female plants, respectively. CONCLUSIONS: The lower ratio of proportional changes in P vs. N for females likely reflects stronger P limitation for their vegetative growth, as they require greater P investments in fruiting. Therefore, P vs. N scaling can be a key avenue allowing for sex-specific strategic optimization under unequal reproductive requirements. This study uncovers a hidden aspect of secondary sex character in dioecious plants, and highlights the use of trait scaling to understand sex-defined economic strategies.


Assuntos
Nitrogênio , Fósforo , Folhas de Planta , Reprodução , Fósforo/metabolismo , Fósforo/análise , Nitrogênio/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , China , Cyperaceae/fisiologia , Cyperaceae/crescimento & desenvolvimento
9.
J Chem Phys ; 160(22)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874102

RESUMO

Experimental and numerical studies were performed on the vibrational energy relaxation in shock-heated CO/N2/Ar mixtures. A laser absorption technique was applied to the time-dependent rovibrational temperature time-history measurements. The vibrational relaxation data of reflected-shock-heated CO were summarized at 1720-3230 K. In shock-tube experiments, the rotational temperature of CO quickly reached equilibrium, whereas a relaxation process was found in the time-dependent vibrational temperature. For the mixture with 1.0% CO and 10.0% N2, the vibrational excitation caused a decrease in the macroscopic thermodynamic temperature of the test gas. In the simulations, the state-to-state (StS) approach was employed, where the vibrational energy levels of CO and N2 are treated as pseudo-species. The vibrational state-specific inelastic rate coefficients of N2-Ar collisions were calculated using the mixed quantum-classical method based on a newly developed three-dimensional potential energy surface. The StS predictions agreed well with the measurements, whereas deviations were found between the Schwartz-Slawsky-Herzfeld formula predictions and the measurements. The Millikan-White vibrational relaxation data of the N2-Ar system were found to have the most significant impact on the model predictions via sensitivity analysis. The vibrational relaxation data of the N2-Ar system were then modified according to the experimental data and StS results, providing an indirect way to optimize the vibrational relaxation data of a specific system. Moreover, the vibrational distribution functions of CO and N2 and the effects of the vibration-vibration-translation energy transfer path on the thermal nonequilibrium behaviors were highlighted.

10.
Chem Biodivers ; 21(5): e202400448, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38498112

RESUMO

Citronella and Nutmeg are two common spices used for seasoning and medicinal purposes, both of which have significant economic value. This study aimed to investigate whether Citronella essential oil and Nutmeg essential oil (NEO) can ameliorate monosodium urate (MSU)-induced gouty arthritis in rats and the potential mechanisms. The results showed that CEO and NEO reduced swelling and redness at joint sites, inhibited neutrophil infiltration, and limited proinflammatory mediator secretion in mice with MSU-induced gouty arthritis. Based on the results of network pharmacology, molecular docking, and western blotting, CEO and NEO may exert anti-gouty arthritis effects by reducing the expression of reactive oxygen species and oxidative stress and downregulating the phosphorylation of the PI3K/AKT/mTOR signaling pathway, thereby inhibiting the production of the NLRP3 inflammasome and inhibiting the production of inflammatory cytokines. Therefore, these two essential oils show potential for use as adjuvant treatments for gouty arthritis in specific aromatherapy products or food seasonings.


Assuntos
Artrite Gotosa , Proteína 3 que Contém Domínio de Pirina da Família NLR , Óleos Voláteis , Estresse Oxidativo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Artrite Gotosa/tratamento farmacológico , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/metabolismo , Ratos , Masculino , Myristica/química , Ácido Úrico/metabolismo , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley
11.
Sensors (Basel) ; 24(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339633

RESUMO

As a common water pollutant, ammonia nitrogen poses a serious risk to human health and the ecological environment. Therefore, it is important to develop a simple and efficient sensing scheme to achieve accurate detection of ammonia nitrogen. Here, we report a simple fabrication electrode for the electrochemical synthesis of platinum-zinc alloy nanoflowers (PtZn NFs) on the surface of carbon cloth. The obtained PtZn NFs/CC electrode was applied to the electrochemical detection of ammonia nitrogen by differential pulse voltammetry (DPV). The enhanced electrocatalytic activity of PtZn NFs and the larger electrochemical active area of the self-supported PtZn NFs/CC electrode are conducive to improving the ammonia nitrogen detection performance of the sensitive electrode. Under optimized conditions, the PtZn NFs/CC electrode exhibits excellent electrochemical performance with a wide linear range from 1 to 1000 µM, a sensitivity of 21.5 µA µM-1 (from 1 µM to 100 µM) and a lower detection limit of 27.81 nM, respectively. PtZn NFs/CC electrodes show excellent stability and anti-interference. In addition, the fabricated electrochemical sensor can be used to detect ammonia nitrogen in tap water and lake water samples.

12.
Sensors (Basel) ; 24(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38257480

RESUMO

Pt-based electrochemical ammonia-nitrogen sensors played a significance role in real-time monitoring the ammonia-nitrogen concentration. The alloying of Pt and transition metals was one of the effective ways to increase the detectability of the sensitive electrode. In this paper, a self-supported electrochemical electrode for the detection of ammonia nitrogen was obtained by the electrodeposition of PtNi alloy nanoleaves on a carbon cloth (PtNi-CC). Experimental results showed that the PtNi-CC electrode exhibited enhanced detection performance with a wide linear range from 0.5 to 500 µM, high sensitivity (7.83 µA µM-1 cm-2 from 0.5 to 150 µM and 0.945 µA µM-1 cm-2 from 150 to 500 µM) and lower detection limit (24 nM). The synergistic effect between Pt and Ni and the smaller lattice spacing of the PtNi alloy were the main reasons for the excellent performance of the electrode. This work showed the great potential of Pt-based alloy electrodes for the detection of ammonia-nitrogen.

13.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1485-1493, 2024 Mar.
Artigo em Zh | MEDLINE | ID: mdl-38621932

RESUMO

Chuanxiong Rhizoma is a well-known Sichuan-specific herbal medicine. Its original plant, Ligusticum chuanxiong, has been cultivated asexually for a long time. L. chuanxiong has sexual reproductive disorders, which restricts its germplasm innovation. However, there is little research on the reproductive system of L. chuanxiong. This study is based on a comparative anatomical research approach, using morphological dissection, paraffin sectioning, staining and compression, and combined with scanning electron microscopy technology, to observe and compare the flowers, fruits, and seeds at various stages of reproductive growth of L. chuanxiong and its wild relative L. sinense. The results showed that the meiosis of pollen mother cells is abnormal in L. chuanxiong anthers, and the size and number of microspores are uneven and inconsistent in the tetrad stage. tapetum cells are not completely degenerated during anther development. During the pollen ripening stage, there are fine cracks in the anther wall, while most anthers could not release pollen normally. The surface of mature pollen grains is concave and partially deformed, and the pollens are all inactive and cannot germinate in vitro. The starch, polysaccharides, and lipids in the pollen were insufficient. The filaments of L. chuanxiong are short at the flowering stage and recurved downward. Double-hanging fruits were observed in the fruiting stage, being wrinkled; with shriveled seeds. Compared with L. sinense at the same stage, the anthers of L. sinense developed normally, and the pollen grains are vigorous and can germinate in vitro. The double-hanging fruits of L. sinense are full and normal; at the flowering period, the filaments are long and erect, significantly higher than the stigma. Mature blastocysts are visible in the ovary of both L. chuanxiong and L. sinense, and there is no significant difference in stigmas. The conclusion is that during the development of L. chuanxiong stamens, the meiosis of pollen mother cells is abnormal, and tetrad, tapetum, filament and other pollen structures develop abnormally. L. chuanxiong has the characteristic of male infertility, which is an important reason for its sexual reproductive disorders.


Assuntos
Ligusticum , Reprodução , Pólen , Flores , Polissacarídeos
14.
Kidney Int ; 103(1): 100-114, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36087809

RESUMO

Necroinflammation plays an important role in disease settings such as acute kidney injury (AKI). We and others have elucidated that prostaglandins, which are critically involved in inflammation, may activate E-prostanoid 3 receptor (EP3) at low concentrations. However, how EP3 blockade interacts with regulated cell death and affects AKI remains unknown. In this study, AKI was induced by ischemia-reperfusion (30 minutes/24 hours) in Ep3 knockout (Ep3-/-), bone marrow chimeric, myeloid conditional EP3 knockout and corresponding control mice. The production of prostaglandins E2 and I2 was markedly increased after ischemia-reperfusion, and either abrogation or antagonism of EP3 ameliorated the injury. EP3 deficiency curbed inflammatory cytokine release, neutrophil infiltration and serum high-mobility group box 1 levels, but additional TLR4 inhibition with TAK-242 did not offer further protection against the injury and inflammation. The protection of Ep3-/- was predominantly mediated by suppressing Mixed Lineage Kinase domain-Like-dependent necroptosis, resulting from the inhibition of cytokine generation and the switching of cell death modality from necroptosis to apoptosis through caspase-8 up-regulation, in part due to the restraint of IL-6/JAK2/STAT3 signaling. EP3 deficiency failed to further alleviate the injury when necroptosis was inhibited. Ep3-/- in bone marrow-derived cells, particularly that in myeloid cells, protected kidneys to the same extent as that of global EP3 deletion. Thus, our results demonstrate that EP3 deficiency especially that on myeloid cells, ameliorates ischemic AKI via curbing inflammation and breaking the auto-amplification loop of necroinflammation. Hence, EP3 may be a promising target for the prevention and/or treatment of AKI.


Assuntos
Injúria Renal Aguda , Animais , Camundongos , Injúria Renal Aguda/genética , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Apoptose/fisiologia , Isquemia/metabolismo , Rim/metabolismo , Prostaglandinas/metabolismo , Inflamação/metabolismo , Células Mieloides/metabolismo , Citocinas/metabolismo , Camundongos Endogâmicos C57BL
15.
BMC Plant Biol ; 23(1): 597, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017446

RESUMO

BACKGROUND: Arbuscular mycorrhizal fungi (AMF) form symbiotic relationships with various terrestrial plants and have attracted considerable interest as biofertilizers for improving the quality and yield of medicinal plants. Despite the widespread distribution of AMFs in Salvia miltiorrhiza Bunge's roots, research on the impact of multiple AMFs on biomass and active ingredient accumulations has not been conducted. In this study, the effects of five native AMFs (Glomus formosanum, Septoglomus constrictum, Rhizophagus manihotis, Acaulospora laevis, and Ambispora gerdemannii) and twenty-six communities on the root biomass and active ingredient concentrations of S. miltiorrhiza were assessed using the total factor design method. RESULTS: Thirty-one treatment groups formed symbiotic relationships with S. miltiorrhiza based on the pot culture results, and the colonization rate ranged from 54.83% to 89.97%. AMF communities had higher colonization rates and total phenolic acid concentration than single AMF, and communities also appeared to have higher root fresh weight, dry weight, and total phenolic acid concentration than single inoculations. As AMF richness increased, there was a rising trend in root biomass and total tanshinone accumulations (ATTS), while total phenolic acid accumulations (ATP) showed a decreasing trend. This suggests that plant productivity was influenced by the AMF richness, with higher inoculation benefits observed when the communities contained three or four AMFs. Additionally, the affinities of AMF members were also connected to plant productivity. The inoculation effect of closely related AMFs within the same family, such as G. formosanum, S. constrictum, and R. manihotis, consistently yielded lower than that of mono-inoculation when any combinations were applied. The co-inoculation of S. miltiorrhiza with nearby or distant AMFs from two families, such as G. formosanum, R. manihotis, and Ac. laevis or Am. gerdemannii resulted in an increase of ATP and ATTS by more than 50%. AMF communities appear to be more beneficial to the yield of bioactive constituents than the single AMF, but overall community inoculation effects are related to the composition of AMFs and the relationship between members. CONCLUSION: This study reveals that the AMF community has great potential to improve the productivity and the accumulation of bioactive constituents in S. miltiorrhiza, indicating that it is an effective way to achieve sustainable agricultural development through using the AMF community.


Assuntos
Micorrizas , Plantas Medicinais , Salvia miltiorrhiza , Humanos , Plantas Medicinais/microbiologia , Raízes de Plantas , Fungos , Trifosfato de Adenosina
16.
Small ; 19(26): e2208052, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942697

RESUMO

The formation of nanoaggregates makes a great difference to the improvement of photodynamic therapy (PDT) performance to some extent, but constructing stable aggregates with a clear structure is simultaneously a big challenge for us. Herein, just by electrostatic interaction, cationic 2PAHs and anionic FBA351, regarded as acceptor (A) and donor (D), respectively, are utilized to prepare stable aggregate of ionic-bonds coupled polymer (ICP) with repeated "D-A" structure, which is fully characterized by nuclear magnetic resonance (NMR), time-of-flight mass spectrometry, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Remarkably, aggregate ICP with multiple "D-A" structures showed enhanced photosensitization efficiency over its precursor 2PAHs and FBA351, which is in accord with the image-guided photodynamic anticancer therapy. Such results not only offer a simple way to obtain stable aggregate but also give us a guideline to design efficient photosensitizers.

17.
J Transl Med ; 21(1): 823, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978379

RESUMO

BACKGROUND: Doxorubicin (DOX)-induced cardiotoxicity (DIC) is a major impediment to its clinical application. It is indispensable to explore alternative treatment molecules or drugs for mitigating DIC. WGX50, an organic extract derived from Zanthoxylum bungeanum Maxim, has anti-inflammatory and antioxidant biological activity, however, its function and mechanism in DIC remain unclear. METHODS: We established DOX-induced cardiotoxicity models both in vitro and in vivo. Echocardiography and histological analyses were used to determine the severity of cardiac injury in mice. The myocardial damage markers cTnT, CK-MB, ANP, BNP, and ferroptosis associated indicators Fe2+, MDA, and GPX4 were measured using ELISA, RT-qPCR, and western blot assays. The morphology of mitochondria was investigated with a transmission electron microscope. The levels of mitochondrial membrane potential, mitochondrial ROS, and lipid ROS were detected using JC-1, MitoSOX™, and C11-BODIPY 581/591 probes. RESULTS: Our findings demonstrate that WGX50 protects DOX-induced cardiotoxicity via restraining mitochondrial ROS and ferroptosis. In vivo, WGX50 effectively relieves doxorubicin-induced cardiac dysfunction, cardiac injury, fibrosis, mitochondrial damage, and redox imbalance. In vitro, WGX50 preserves mitochondrial function by reducing the level of mitochondrial membrane potential and increasing mitochondrial ATP production. Furthermore, WGX50 reduces iron accumulation and mitochondrial ROS, increases GPX4 expression, and regulates lipid metabolism to inhibit DOX-induced ferroptosis. CONCLUSION: Taken together, WGX50 protects DOX-induced cardiotoxicity via mitochondrial ROS and the ferroptosis pathway, which provides novel insights for WGX50 as a promising drug candidate for cardioprotection.


Assuntos
Cardiotoxicidade , Ferroptose , Camundongos , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Espécies Reativas de Oxigênio/metabolismo , Miócitos Cardíacos/patologia , Doxorrubicina/efeitos adversos , Mitocôndrias/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Apoptose
18.
Microb Pathog ; 184: 106361, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37743027

RESUMO

Essential oils (EOs), which are plant-oriented anti-biofilm agents, are extensively encapsulated by cyclodextrins to overcome their aqueous solubility and chemical instability, and achieve slow release during long-term storage. However, the biological activities of EOs decreased after initial encapsulation in CDs. In this study, modified-ß-cyclodextrins (ß-CDs) were screened as wall materials to maintained the initial anti-biofilm effect of pure CEO. The inhibitory and bactericidal activities of CEO encapsulated in five types of ß-CDs with different substituents (primary hydroxyl, maltosyl, hydroxypropyl, methyl, and carboxymethyl) against Staphylococcus aureus biofilm were evaluated. Crystal violet assay and 3D-View observations suggested that CEO and its inclusion complexes (CEO-ICs) inhibited Staphylococcus aureus biofilm formation through the inhibition of colonising spreading, exopolysaccharide synthesis, and cell surface properties. Molecular docking revealed the causes of the decrease in the anti-biofilm effect after encapsulation, and quantitative structure-activity relationship assays provided MIC and MBIC prediction equation for modified-ß-cyclodextrins inclusion complexes. Maltosyl-ß-CD was screened as the best wall material to retained the anti-biofilm activities as pure cinnamon essential oil in initial stage, and its inclusion complexes can effectively inhibited biofilm formation in milk. This study provides a theoretical guidance for the selection ß-CDs to encapsulate CEO as plant-oriented anti-biofilm agents to inhibit bacterial biofilm formation.


Assuntos
Óleos Voláteis , beta-Ciclodextrinas , beta-Ciclodextrinas/farmacologia , beta-Ciclodextrinas/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Cinnamomum zeylanicum , Simulação de Acoplamento Molecular , Biofilmes
19.
Arch Microbiol ; 205(5): 187, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043022

RESUMO

A Gram-stain negative, strictly aerobic, and rod-shaped bacterium, designated as strain L182T, was isolated from coastal sediment in Beihai, Guangxi Province, PR China. Colonies of strain L182T were yellow, 2 mm in diameter, round, opaque, smooth and convex after incubation on marine ager at 30 °C for 3 days. Cells were catalase-positive but oxidase-negative. Growth of strain L182T was observed at 4-40 °C (optimum, 25 °C), pH 5.5-10.0 (optimum, pH 5.5-8.0) and with 0-6% (w/v) NaCl (optimum, 0.5-4.0%). The G + C content based on the genome sequence was 36.0%. The only respiratory quinone was MK-6. The main polar lipids included phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminophospholipid, one unidentified glycolipids, four unidentified aminolipids and six unidentified lipids. The major fatty acids (> 10%) were iso-C15:0, iso-C15:1 G and iso-C17:0 3-OH. The 16S rRNA gene sequence similarity between strain L182T and Aestuariibaculum suncheonense SC17T was 98.2%, and the similarities with other type strains of the genus Aestuariibaculum were 96.1-97.2%. The average nucleotide identity and in silicon DNA-DNA hybridization values between the strain L182T and its closely related Aestuariibaculum species were 80.8-85.2% and 22.0-29.5%. According to the above results, Aestuariibaculum lutulentum sp. nov. was proposed as a novel species. The type strain is L182T (= MCCC 1K08065T = KCTC 92530T).


Assuntos
Ácidos Graxos , Água do Mar , Água do Mar/microbiologia , RNA Ribossômico 16S/genética , Filogenia , China , DNA Bacteriano/genética , Ácidos Graxos/análise , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Vitamina K 2/química
20.
J Chem Phys ; 159(23)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38108486

RESUMO

The time-dependent rotational and vibrational temperatures were measured to study the shock-heated thermal nonequilibrium behaviors of CO with Ar, He, and H2 as collision partners. Three interference-free transition lines in the fundamental vibrational band of CO were applied to the fast, in situ, and state-specific measurements. Vibrational relaxation times of CO were summarized over a temperature range of 1110-2820 K behind reflected shocks. The measured rotational temperature instantaneously reached an equilibrium state behind shock waves. The measured vibrational temperature experienced a relaxation process before reaching the equilibrium state. The measured vibrational temperature time histories were compared with predictions based on the Landau-Teller model and the state-to-state approach. The state-to-state approach treats the vibrational energy levels of CO as pseudo-species and accurately describes the detailed thermal nonequilibrium processes behind shock waves. The datasets of state-specific inelastic rate coefficients of CO-Ar, CO-He, CO-CO, and CO-H2 collisions were calculated in this study using the mixed quantum-classical method and the semiclassical forced harmonic oscillator model. The predictions based on the state-to-state approach agreed well with the measured data and nonequilibrium (non-Boltzmann) vibrational distributions were found in the post-shock regions, while the Landau-Teller model predicted slower vibrational temperature time histories than the measured data. Modifications were applied to the Millikan-White vibrational relaxation data of the CO-Ar and CO-H2 systems to improve the performance of the Landau-Teller model. In addition, the thermal nonequilibrium processes behind incident shocks, the acceleration effects of H2O on the relaxation process of CO, and the characterization of vibrational temperature were highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA