Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Br J Haematol ; 202(4): 720-721, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37259613

RESUMO

In this issue, Rovsing et al. employ unbiased genome-wide CRISPR screening and functional cellular assays to investigate the cellular response to vincristine, an important component of the front-line DLBCL treatment R-CHOP. Their findings reveal intriguing targets and mechanisms that hold promise for enhancing DLBCL treatment and provide a foundation for the development of future drug regimens. This research prompts further exploration of the translational potential to advance more effective and individualized approaches in the clinical management of DLBCL. Commentary on: Rovsing et al. Resistance to vincristine in DLBCL by disruption of p53-induced cell cycle arrest and apoptosis mediated by KIF18B and USP28. Br J Haematol 2023;202:825-839.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Linfoma Difuso de Grandes Células B , Humanos , Vincristina/farmacologia , Vincristina/uso terapêutico , Ciclofosfamida/uso terapêutico , Rituximab/uso terapêutico , Doxorrubicina/uso terapêutico , Prednisona/uso terapêutico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/diagnóstico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resultado do Tratamento , Ubiquitina Tiolesterase , Cinesinas
2.
J Med Chem ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949959

RESUMO

HDAC8 plays crucial roles in biological processes, from gene regulation to cell motility, making it a highly desirable target for therapeutic intervention. HDAC8 also has deacetylase-independent activity which cannot be blocked by a conventional inhibitor. In this study, we report the discovery of YX862, a highly potent and selective hydrazide-based HDAC8-proteolysis targeting chimera (PROTAC) degrader. The selectivity is achieved through rational design of the warhead to spare HDAC3 activity from the previous HDAC3/8 dual degrader YX968. We demonstrate that the degradation of HDAC8 by YX862 increases acetylation levels of its nonhistone substrates such as SMC3 without significantly triggering histone PTM, supporting HDAC8's major role in nonhistone PTM regulation. YX862 exhibits promising on-target antiproliferative activity against DLBCL cells with higher potency than the HDAC8 selective inhibitor PCI-34051. As a selective HDAC8 degrader that avoids pan-HDAC inhibition, YX862 represents a valuable tool for exploring the biological and therapeutic potential of HDAC8.

3.
Leukemia ; 35(8): 2151-2165, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34017074

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous disease and represents the most common subtype of lymphoma. Although 60-70% of all patients can be cured by the current standard of care in the frontline setting, the majority of the remaining patients will experience treatment resistance and have a poor clinical outcome. Numerous efforts have been made to improve the efficacy of the standard regimen by, for example, dose intensification or adding novel agents. However, these results generally failed to demonstrate significant clinical benefits. Hence, understanding treatment resistance is a pressing need to optimize the outcome of those patients. In this Review, we first describe the conceptual sources of treatment resistance in DLBCL and then provide detailed and up-to-date molecular insight into the mechanisms of resistance to the current treatment options in DLBCL. We lastly highlight the potential strategies for rationally managing treatment resistance from both the preventive and interventional perspectives.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Humanos , Linfoma Difuso de Grandes Células B/patologia
4.
Commun Biol ; 4(1): 878, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267311

RESUMO

Angiogenesis underlies development, physiology and pathogenesis of cancer, eye and cardiovascular diseases. Inhibiting aberrant angiogenesis using anti-angiogenic therapy (AAT) has been successful in the clinical treatment of cancer and eye diseases. However, resistance to AAT inevitably occurs and its molecular basis remains poorly understood. Here, we uncover molecular modifiers of the blood endothelial cell (EC) response to a widely used AAT bevacizumab by performing a pooled genetic screen using three-dimensional microcarrier-based cell culture and CRISPR-Cas9. Functional inhibition of the epigenetic reader BET family of proteins BRD2/3/4 shows unexpected mitigating effects on EC survival and/or proliferation upon VEGFA blockade. Moreover, transcriptomic and pathway analyses reveal an interaction between epigenetic regulation and anti-angiogenesis, which may affect chromosomal structure and activity in ECs via the cell cycle regulator CDC25B phosphatase. Collectively, our findings provide insight into epigenetic regulation of the EC response to VEGFA blockade and may facilitate development of quality biomarkers and strategies for overcoming resistance to AAT.


Assuntos
Inibidores da Angiogênese/genética , Bevacizumab/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Epigênese Genética , Sangue , Células Endoteliais/efeitos dos fármacos
5.
Clin Cancer Res ; 27(19): 5401-5414, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34168051

RESUMO

PURPOSE: The efficacy of EZH2 inhibition has been modest in the initial clinical exploration of diffuse large B-cell lymphoma (DLBCL), yet EZH2 inhibitors are well tolerated. Herein, we aimed to uncover genetic and pharmacologic opportunities to enhance the clinical efficacy of EZH2 inhibitors in DLBCL. EXPERIMENTAL DESIGN: We conducted a genome-wide sensitizing CRISPR/Cas9 screen with tazemetostat, a catalytic inhibitor of EZH2. The sensitizing effect of IKZF1 loss of function was then validated and leveraged for combination treatment with lenalidomide. RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing analyses were performed to elucidate transcriptomic and epigenetic changes underlying synergy. RESULTS: We identified IKZF1 knockout as the top candidate for sensitizing DLBCL cells to tazemetostat. Treating cells with tazemetostat and lenalidomide, an immunomodulatory drug that selectively degrades IKAROS and AIOLOS, phenocopied the effects of the CRISPR/Cas9 screen. The combined drug treatment triggered either cell-cycle arrest or apoptosis in a broad range of DLBCL cell lines, regardless of EZH2 mutational status. Cell-line-based xenografts also showed slower tumor growth and prolonged survival in the combination treatment group. RNA-seq analysis revealed strong upregulation of interferon signaling and antiviral immune response signatures. Gene expression of key immune response factors such as IRF7 and DDX58 were induced in cells treated with lenalidomide and tazemetostat, with a concomitant increase of H3K27 acetylation at their promoters. Furthermore, transcriptome analysis demonstrated derepression of endogenous retroviruses after combination treatment. CONCLUSIONS: Our data underscore the synergistic interplay between IKAROS degradation and EZH2 inhibition on modulating epigenetic changes and ultimately enhancing antitumor effects in DLBCL.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Linfoma Difuso de Grandes Células B , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Humanos , Lenalidomida , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia
6.
Biotechniques ; 63(1): 34-36, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28701146

RESUMO

Counting nuclei released from intact cells is a convenient and reliable approach to assess cell density during microcarrier-based culture of adherent cells. However, commonly used methods for counting nuclei, such as crystal violet staining and quantification with a hemocytometer/automated imaging system or a Coulter counter, are imprecise, laborious and, limited in throughput. Here, we describe the use of high-affinity pro-fluorescent nucleic acid stains and volumetric flow cytometry for automated counting of nuclei released from cells attached to microcarriers with improved precision and high sample throughput. This simple procedure facilitates rapid and precise assessment of cell attachment, survival, and proliferation on microcarriers, and can provide information about the cell cycle, all without the need for cell detachment. Consequently, various microcarrier-based applications, from small-scale multi-factor experiments to large-scale functional genetic screens and clinical/industrial cultures, could be enhanced by this approach.


Assuntos
Núcleo Celular , Citometria de Fluxo/métodos , Corantes Fluorescentes/química , Ácidos Nucleicos/química , Células HEK293 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA