Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nat Immunol ; 19(9): 912-922, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30131615

RESUMO

Receptor-interacting protein (RIP) kinases, in particular RIPK1, RIPK2 and RIPK3, have emerged as pleiotropic modulators of inflammatory responses that act either by directly regulating intracellular inflammatory signaling pathways or by causing apoptotic or necrotic cell death. In this Review, we discuss the signaling pathways and immunological functions of these RIP kinases in the inflammatory response to microbial infection and tissue injury, as well as their potential roles in the pathogenesis of inflammatory disease and aging.


Assuntos
Envelhecimento/fisiologia , Infecções Bacterianas/imunologia , Imunidade/imunologia , Inflamação/imunologia , Micoses/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Animais , Morte Celular , Humanos , Transdução de Sinais
2.
Cell ; 148(1-2): 213-27, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22265413

RESUMO

The receptor-interacting serine-threonine kinase 3 (RIP3) is a key signaling molecule in the programmed necrosis (necroptosis) pathway. This pathway plays important roles in a variety of physiological and pathological conditions, including development, tissue damage response, and antiviral immunity. Here, we report the identification of a small molecule called (E)-N-(4-(N-(3-methoxypyrazin-2-yl)sulfamoyl)phenyl)-3-(5-nitrothiophene-2-yl)acrylamide--hereafter referred to as necrosulfonamide--that specifically blocks necrosis downstream of RIP3 activation. An affinity probe derived from necrosulfonamide and coimmunoprecipitation using anti-RIP3 antibodies both identified the mixed lineage kinase domain-like protein (MLKL) as the interacting target. MLKL was phosphorylated by RIP3 at the threonine 357 and serine 358 residues, and these phosphorylation events were critical for necrosis. Treating cells with necrosulfonamide or knocking down MLKL expression arrested necrosis at a specific step at which RIP3 formed discrete punctae in cells. These findings implicate MLKL as a key mediator of necrosis signaling downstream of the kinase RIP3.


Assuntos
Necrose/metabolismo , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Acrilamidas/farmacologia , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas Quinases/química , Proteínas Quinases/genética , Alinhamento de Sequência , Sulfonamidas/farmacologia
3.
Blood ; 141(9): 1070-1086, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36356302

RESUMO

Intestinal epithelial cells (IECs) are implicated in the propagation of T-cell-mediated inflammatory diseases, including graft-versus-host disease (GVHD), but the underlying mechanism remains poorly defined. Here, we report that IECs require receptor-interacting protein kinase-3 (RIPK3) to drive both gastrointestinal (GI) tract and systemic GVHD after allogeneic hematopoietic stem cell transplantation. Selectively inhibiting RIPK3 in IECs markedly reduces GVHD in murine intestine and liver. IEC RIPK3 cooperates with RIPK1 to trigger mixed lineage kinase domain-like protein-independent production of T-cell-recruiting chemokines and major histocompatibility complex (MHC) class II molecules, which amplify and sustain alloreactive T-cell responses. Alloreactive T-cell-produced interferon gamma enhances this RIPK1/RIPK3 action in IECs through a JAK/STAT1-dependent mechanism, creating a feed-forward inflammatory cascade. RIPK1/RIPK3 forms a complex with JAK1 to promote STAT1 activation in IECs. The RIPK1/RIPK3-mediated inflammatory cascade of alloreactive T-cell responses results in intestinal tissue damage, converting the local inflammation into a systemic syndrome. Human patients with severe GVHD showed highly activated RIPK1 in the colon epithelium. Finally, we discover a selective and potent RIPK1 inhibitor (Zharp1-211) that significantly reduces JAK/STAT1-mediated expression of chemokines and MHC class II molecules in IECs, restores intestinal homeostasis, and arrests GVHD without compromising the graft-versus-leukemia (GVL) effect. Thus, targeting RIPK1/RIPK3 in IECs represents an effective nonimmunosuppressive strategy for GVHD treatment and potentially for other diseases involving GI tract inflammation.


Assuntos
Doença Enxerto-Hospedeiro , Intestinos , Camundongos , Humanos , Animais , Mucosa Intestinal/metabolismo , Inflamação/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/metabolismo , Homeostase , Proteína Serina-Treonina Quinases de Interação com Receptores
4.
EMBO Rep ; 23(8): e54438, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35735238

RESUMO

Mixed lineage kinase domain-like protein (MLKL) is the terminal effector of necroptosis, a form of regulated necrosis. Optimal activation of necroptosis, which eliminates infected cells, is critical for antiviral host defense. MicroRNAs (miRNAs) regulate the expression of genes involved in various biological and pathological processes. However, the roles of miRNAs in necroptosis-associated host defense remain largely unknown. We screened a library of miRNAs and identified miR-324-5p as the most effective suppressor of necroptosis. MiR-324-5p downregulates human MLKL expression by specifically targeting the 3'UTR in a seed region-independent manner. In response to interferons (IFNs), miR-324-5p is downregulated via the JAK/STAT signaling pathway, which removes the posttranscriptional suppression of MLKL mRNA and facilitates the activation of necroptosis. In influenza A virus (IAV)-infected human primary macrophages, IFNs are induced, leading to the downregulation of miR-324-5p. MiR-324-5p overexpression attenuates IAV-associated necroptosis and enhances viral replication, whereas deletion of miR-324-5p potentiates necroptosis and suppresses viral replication. Hence, miR-324-5p negatively regulates necroptosis by manipulating MLKL expression, and its downregulation by IFNs orchestrates optimal activation of necroptosis in host antiviral defense.


Assuntos
Vírus da Influenza A , MicroRNAs , Antivirais , Humanos , Interferons , MicroRNAs/genética , MicroRNAs/metabolismo , Necroptose , Replicação Viral/fisiologia
5.
Cell ; 137(6): 1100-11, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19524512

RESUMO

Smac mimetics induce apoptosis synergistically with TNF-alpha by triggering the formation of a caspase-8-activating complex containing receptor interacting protein kinase-1 (RIPK1). Caspase inhibitors block this form of apoptosis in many types of cells. However, in several other cell lines, caspase inhibitors switch the apoptotic response to necrosis. A genome wide siRNA screen revealed another member of the RIP kinase family, RIP3, to be required for necrosis. The expression of RIP3 in different cell lines correlates with their responsiveness to necrosis induction. The kinase activity of RIP3 is essential for necrosis execution. Upon induction of necrosis, RIP3 is recruited to RIPK1 to form a necrosis-inducing complex. Embryonic fibroblasts from RIP3 knockout mice are resistant to necrosis and RIP3 knockout animals are devoid of inflammation inflicted tissue damage in an acute pancreatitis model. These data indicate RIP3 as the determinant for cellular necrosis in response to TNF-alpha family of death-inducing cytokines.


Assuntos
Necrose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Linhagem Celular Tumoral , Ceruletídeo , Humanos , Camundongos , Mutação , Pancreatite/induzido quimicamente , Pancreatite/fisiopatologia , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
6.
J Virol ; 96(17): e0077422, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35972291

RESUMO

XIAP-associated factor 1 (XAF1) is an interferon (IFN)-stimulated gene (ISG) that enhances IFN-induced apoptosis. However, it is unexplored whether XAF1 is essential for the host fighting against invaded viruses. Here, we find that XAF1 is significantly upregulated in the host cells infected with emerging RNA viruses, including influenza, Zika virus (ZIKV), and SARS-CoV-2. IFN regulatory factor 1 (IRF1), a key transcription factor in immune cells, determines the induction of XAF1 during antiviral immunity. Ectopic expression of XAF1 protects host cells against various RNA viruses independent of apoptosis. Knockout of XAF1 attenuates host antiviral innate immunity in vitro and in vivo, which leads to more severe lung injuries and higher mortality in the influenza infection mouse model. XAF1 stabilizes IRF1 protein by antagonizing the CHIP-mediated degradation of IRF1, thus inducing more antiviral IRF1 target genes, including DDX58, DDX60, MX1, and OAS2. Our study has described a protective role of XAF1 in the host antiviral innate immunity against RNA viruses. We have also elucidated the molecular mechanism that IRF1 and XAF1 form a positive feedback loop to induce rapid and robust antiviral immunity. IMPORTANCE Rapid and robust induction of antiviral genes is essential for the host to clear the invaded viruses. In addition to the IRF3/7-IFN-I-STAT1 signaling axis, the XAF1-IRF1 positive feedback loop synergistically or independently drives the transcription of antiviral genes. Moreover, XAF1 is a sensitive and reliable gene that positively correlates with the viral infection, suggesting that XAF1 is a potential diagnostic marker for viral infectious diseases. In addition to the antitumor role, our study has shown that XAF1 is essential for antiviral immunity. XAF1 is not only a proapoptotic ISG, but it also stabilizes the master transcription factor IRF1 to induce antiviral genes. IRF1 directly binds to the IRF-Es of its target gene promoters and drives their transcriptions, which suggests a unique role of the XAF1-IRF1 loop in antiviral innate immunity, particularly in the host defect of IFN-I signaling such as invertebrates.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Fator Regulador 1 de Interferon , Infecções por Vírus de RNA , Vírus de RNA , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Proteínas Reguladoras de Apoptose/imunologia , Humanos , Imunidade Inata , Fator Regulador 1 de Interferon/imunologia , Camundongos , Camundongos Knockout , Infecções por Vírus de RNA/imunologia , Replicação Viral
7.
Bioorg Chem ; 137: 106584, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37163814

RESUMO

Interleukin-1 receptor associated kinase-4 (IRAK4) has emerged as a therapeutic target for inflammatory and autoimmune diseases. Through reversing the amide of CA-4948 and computer aided structure-activity relationship (SAR) studies, a series of IRAK4 inhibitors with oxazolo[4,5-b]pyridine scaffold were identified. Compound 32 showed improved potency (IC50 = 43 nM) compared to CA-4948 (IC50 = 115 nM), but suffered from hERG inhibition (IC50 = 5.7 µM). Further optimization led to compound 42 with reduced inhibition of hERG (IC50 > 30 µM) and 13-fold higher activity (IC50 = 8.9 nM) than CA-4948. Importantly, compound 42 had favorable in vitro ADME and in vivo pharmacokinetic properties. Furthermore, compound 42 significantly reduced LPS-induced production of serum TNF-α and IL-6 cytokines in the mouse model. The overall profiles of compound 42 support it as a lead for the development of IRAK4 inhibitors for the treatment of inflammatory and autoimmune disorders.


Assuntos
Citocinas , Quinases Associadas a Receptores de Interleucina-1 , Animais , Camundongos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Lipopolissacarídeos/farmacologia , Síndrome de Resposta Inflamatória Sistêmica , Relação Estrutura-Atividade
8.
J Proteome Res ; 21(10): 2367-2384, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36106392

RESUMO

Human enterovirus A71 (EV-A71), a member of the Picornaviridae family, is one of the main etiological viruses that lead to hand, foot, and mouth disease (HFMD). We utilized a multiplex tandem mass tag-based quantitative proteomic technique to monitor the alternation of the whole cell proteome and phosphoproteome of human rhabdomyosarcoma cells over the course of EV-A71 infection. We successfully quantified more than 7000 host proteins and 17,000 phosphosites, of which 80 proteins and nearly 1700 phosphosites were significantly regulated upon viral infection. We found that Myc proto-oncogene protein level decreased significantly, benefiting EV-A71 replication. Multiple signaling pathways were regulated in phosphorylation events that converge for protein translation, cell cycle control, and cell survival. Numerous host factors targeted by virus proteins are phosphoproteins. These factors are involved in host translational initiation, unfolded protein response, endoplasmic reticulum stress, and stress granule formation, and their phosphorylation may play key roles in the virus life cycle. Notably, we identified three conserved phosphorylation sites on viral polyproteins that have not been previously reported. Our study provides valuable resources for a systematic understanding of the interaction between the host cells and the EV-A71 at the protein and the post-translational level.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Antígenos Virais/metabolismo , Enterovirus Humano A/fisiologia , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Poliproteínas , Proteoma/genética , Proteoma/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-myc/metabolismo
9.
J Biol Chem ; 297(2): 100930, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34216619

RESUMO

Interferon-γ-inducible factor 16 (IFI16) triggers stimulator of interferon (IFN) genes (STING)-dependent type I IFN production during host antiviral immunity and facilitates p53-dependent apoptosis during suppressing tumorigenesis. We have previously reported that STING-mediated IFI16 degradation negatively regulates type I IFN production. However, it is unknown whether STING also suppresses IFI16/p53-dependent apoptosis via degradation of IFI16. Here, our results from flow cytometry apoptosis detection and immunoblot assays show that IFI16 and nutlin-3, a p53 pathway activator, synergistically induce apoptosis in U2OS and A549 cells. Protein kinase R-triggered phosphorylation of p53 at serine 392 is critical for the IFI16-p53-dependent apoptosis. However, overexpression of STING suppresses p53 serine 392 phosphorylation, p53 transcriptional activity, expression of p53 target genes, and p53-dependent mitochondrial depolarization and apoptosis. In summary, our current study demonstrates that STING-mediated IFI16 degradation negatively regulates IFI16-mediated p53-dependent apoptosis in osteosarcoma and non-small cell lung cancer cells, which suggests a protumorigenic role for STING in certain cancer types because of its potent ability to degrade upstream IFI16.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteína Supressora de Tumor p53 , Apoptose , Carcinoma Pulmonar de Células não Pequenas , Linhagem Celular Tumoral , Proteínas de Drosophila , Humanos , Imunidade Inata , Neoplasias Pulmonares , Fosforilação , Transdução de Sinais
10.
Bioorg Med Chem Lett ; 75: 128968, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36058467

RESUMO

The NOD1/2 (nucleotide-binding oligomerization domain-containing protein 1/2) signaling pathways are involved in innate immune control and host defense. NOD dysfunction can result in a variety of autoimmune disorders. NOD-induced generation of inflammatory cytokines is mediated by receptor-interacting protein kinase 2 (RIPK2), which has been considered as a promising therapeutic target. Herein, we disclose the design, synthesis, and SAR study of a series of RIPK2 inhibitors. The lead compound 17 displayed a high affinity for RIPK2 (Kd = 5.9 nM) and was capable of inhibiting RIPK2 kinase function in an ADP-Glo assay. In vitro DMPK studies showed that compound 17 had good metabolic stability and no CYP inhibition. Compound 17 effectively suppressed inflammatory cytokine production in both cells and animal model.


Assuntos
Citocinas , Iohexol , Difosfato de Adenosina , Animais , Citocinas/metabolismo , Iohexol/análogos & derivados , Relação Estrutura-Atividade
11.
Bioorg Chem ; 129: 106051, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36115309

RESUMO

Receptor-interacting protein kinase-1 (RIPK1) is involved in the necroptosis pathway, which regulates inflammatory signaling and cell death in a variety of diseases, including inflammatory and neurodegenerative disorders. We identified a novel hit compound 36 by a cell-based screening assay (anti-necroptosis EC50 = 58 nM). Starting from compound 36, we designed a series of scaffolds to improve anti-necroptosis activity, physicochemical properties and metabolic stability. The isothiazolo[5,4-b]pyridine backbone proved to be a promising scaffold which provided a number of potent necroptosis inhibitors. Compound 56, for example, effectively blocked necroptosis in both human and mouse cells (EC50 = 1-5 nM). A binding assay showed that compound 56 potently binds to RIPK1 (Kd = 13 nM), but not RIPK3 (Kd > 10,000 nM). Kinase functional assay (ADP-Glo) confirmed that compound 56 inhibits RIPK1 phosphorylation with an IC50 at 5.8 nM. Importantly, compound 56 displayed excellent cross-species liver microsomal metabolic stability (t1/2 > 90 min). Furthermore, compound 56 exhibited favorable in vitro safety profiles in hERG and CYP assays. Finally, pre-treatment with 56 significantly reduced hypothermia and lethal shock in the systemic inflammatory response syndrome mice model. Taken together, compound 56 represented a promising prototype for the development of therapeutic agent to treat inflammation-related diseases.


Assuntos
Necroptose , Piridinas , Humanos , Camundongos , Animais , Fosforilação , Morte Celular , Piridinas/farmacologia , Síndrome de Resposta Inflamatória Sistêmica , Apoptose , Proteína Serina-Treonina Quinases de Interação com Receptores/farmacologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-32060646

RESUMO

Herpes simplex virus (HSV)-1 and HSV-2 are ubiquitous human pathogens that infect keratinized epithelial surfaces and establish lifelong latent infection in sensory neurons of the peripheral nervous system. HSV-1 causes oral cold sores, and HSV-2 causes genital lesions characterized by recurrence at the site of the initial infection. In multicellular organisms, cell death plays a pivotal role in host defense by eliminating pathogen-infected cells. Apoptosis and necrosis are readily distinguished types of cell death. Apoptosis, the main form of programmed cell death, depends on the activity of certain caspases, a family of cysteine proteases. Necroptosis, a regulated form of necrosis that is unleashed when caspase activity is compromised, requires the activation of receptor-interacting protein (RIP) kinase 3 (RIPK3) through its interaction with other RIP homotypic interaction motif (RHIM)-containing proteins such as RIPK1. To ensure lifelong infection in the host, HSV carries out sophisticated molecular strategies to evade host cell death responses during viral infection. HSV-1 is a well-characterized pathogen that encodes potent viral inhibitors that modulate both caspase activation in the apoptosis pathway and RIPK3 activation in the necroptosis pathway in a dramatic, species-specific fashion. The viral UL39-encoded viral protein ICP6, the large subunit of the virus-encoded ribonucleotide reductase, functions as a suppressor of both caspase-8 and RHIM-dependent RIPK3 activities in the natural human host. In contrast, ICP6 RHIM-mediated recruitment of RIPK3 in the nonnatural mouse host drives the direct activation of necroptosis. This chapter provides an overview of the current state of the knowledge on molecular interactions between HSV-1 viral proteins and host cell death pathways and highlights how HSV-1 manipulates cell death signals for the benefit of viral propagation.

13.
Apoptosis ; 25(5-6): 441-455, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32418059

RESUMO

Smac/Diablo is a pro-apoptotic protein via interaction with inhibitors of apoptosis proteins (IAPs) to relieve their inhibition of caspases. Smac mimetic compounds (also known as antagonists of IAPs) mimic the function of Smac/Diablo and sensitize cancer cells to TNF-induced apoptosis. However, the majority of cancer cells are resistant to Smac mimetic alone. Doxorubicin is a widely used chemotherapeutic drug and causes adverse effect of cardiotoxicity in many patients. Therefore, it is important to find strategies of combined chemotherapy to increase chemosensitivity and reduce the adverse effects. Here, we report that doxorubicin synergizes with Smac mimetic to trigger TNF-mediated apoptosis, which is mechanistically distinct from doxorubicin-induced cell death. Doxorubicin sensitizes cancer cells including human pancreatic and colorectal cancer cells to Smac mimetic treatment. The combined treatment leads to synergistic induction of TNFα to initiate apoptosis through activating NF-κB and c-Jun signaling pathways. Knockdown of caspase-8 or knockout of FADD significantly blocked apoptosis synergistically induced by Smac mimetic and doxorubicin, but had no effect on cell death caused by doxorubicin alone. Moreover, Smac mimetic and doxorubicin-induced apoptosis requires receptor-interacting protein kinase 1 (RIPK1) and its deubiquitinating enzyme cylindromatosis (CYLD), not A20. These in vitro findings demonstrate that combination of Smac mimetic and doxorubicin synergistically triggers apoptosis through the TNF/CYLD/RIPK1/FADD/caspase-8 signaling pathway. Importantly, the combined treatment induced in vivo synergistic anti-tumor effects in the xenograft tumor model. Thus, the combined therapy using Smac mimetic and doxorubicin presents a promising apoptosis-inducing strategy with great potential for the development of anti-cancer therapy.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Materiais Biomiméticos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Enzima Desubiquitinante CYLD/genética , Doxorrubicina/farmacologia , Proteínas Mitocondriais/genética , Neoplasias Pancreáticas/tratamento farmacológico , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Caspase 8/genética , Caspase 8/metabolismo , Linhagem Celular Tumoral , Enzima Desubiquitinante CYLD/metabolismo , Sinergismo Farmacológico , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Nus , Proteínas Mitocondriais/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Análise de Sobrevida , Fator de Necrose Tumoral alfa/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Bioorg Chem ; 99: 103824, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32334192

RESUMO

The chemokine receptor CXCR4 has been explored as a drug target due to its involvement in pathological conditions such as HIV infection and cancer metastasis. Here we report the structure-activity relationship study of novel CXCR4 antagonists based on an aminoquinoline template. This template is devoid of the chiral center in the classical tetrahydroquinoline (THQ) ring moiety and therefore can be easily synthesized. A number of potent CXCR4 antagonists were identified, exemplified by compound 3, which demonstrated excellent binding affinity with CXCR4 receptor (IC50 = 57 nM) and inhibited CXCL12 induced cytosolic calcium increase (IC50 = 0.24 nM). Furthermore, compound 3 potently inhibited CXLC12/CXCR4 mediated cell migration in a transwell invasion assay. The simplified synthetic approach combined with good physicochemical properties (e.g. MW 362, clogP 2.1, PSA 48, pKa 7.0 for compound 3) demonstrate the potential of this aminoquinoline template as a novel scaffold to develop CXCR4 antagonists.


Assuntos
Aminoquinolinas/farmacologia , Desenho de Fármacos , Receptores CXCR4/antagonistas & inibidores , Aminoquinolinas/síntese química , Aminoquinolinas/química , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Receptores CXCR4/metabolismo , Relação Estrutura-Atividade
15.
Proc Natl Acad Sci U S A ; 114(11): 2964-2969, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28242694

RESUMO

Previous studies have shown that receptor-interacting protein kinase 3 (RIP3) is involved in many important biological processes, including necroptosis, apoptosis, and inflammation. Here we show that RIP3 plays a critical role in regulating platelet functions and in vivo thrombosis and hemostasis. Tail bleeding times were significantly longer in RIP3-knockout (RIP3-/-) mice compared with their wild-type (WT) littermates. In an in vivo model of arteriole thrombosis, mice lacking RIP3 exhibited prolonged occlusion times. WT mice repopulated with RIP3-/- bone marrow-derived cells had longer occlusion times than RIP3-/- mice repopulated with WT bone marrow-derived cells, suggesting a role for RIP3-deficient platelets in arterial thrombosis. Consistent with these findings, we observed that RIP3 was expressed in both human and mice platelets. Deletion of RIP3 in mouse platelets caused a marked defect in aggregation and attenuated dense granule secretion in response to low doses of thrombin or a thromboxane A2 analog, U46619. Phosphorylation of Akt induced by U46619 or thrombin was diminished in RIP3-/- platelets. Moreover, RIP3 interacted with Gα13 Platelet spreading on fibrinogen and clot retraction were impaired in the absence of RIP3. RIP3 inhibitor dose-dependently inhibited platelet aggregation in vitro and prevented arterial thrombus formation in vivo. These data demonstrate a role for RIP3 in promoting in vivo thrombosis and hemostasis by amplifying platelet activation. RIP3 may represent a novel promising therapeutic target for thrombotic diseases.


Assuntos
Ativação Plaquetária/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Trombose/genética , Trombose/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Plaquetas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Hemostasia/genética , Humanos , Camundongos , Camundongos Knockout , Fosfatidilserinas/metabolismo , Fosforilação , Agregação Plaquetária/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Trombina/metabolismo , Tromboxano A2/metabolismo
16.
BMC Microbiol ; 19(1): 274, 2019 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-31812160

RESUMO

BACKGROUND: HSV-1 is a common pathogen that infects 50-90% of the human population worldwide. HSV-1 causes numerous infection-related diseases, some of which are severely life-threatening. There are antiviral medications with activity against HSV-1. However, with the emergence of drug-resistant mutant strains of HSV-1, there is an urgent need to develop new effective anti-HSV-1 agents. METHODS: Therefore, we screened a chemical library of approximately 1500 compounds to identify inhibitors of HSV-1-induced toxicity for further drug development. Moreover, we performed several experiments, including western blot analysis, Q-PCR analysis and luciferase activity assay, to explore the antiviral mechanism of the candidates. RESULTS: Here, we identified a small molecule, mitoxantrone dihydrochloride, with potency against HSV-1-induced toxicity. Furthermore, the viral titers and expression levels of HSV-1 viral proteins were potently reduced by the presence of MD in many cell lines. Using Q-PCR analysis, we found that MD efficiently reduced the transcription of viral genes that are essential for DNA synthesis, namely, UL5, UL9, UL29, UL30, UL42 and UL52. Notably, MD also significantly inhibited the transcription of the immediate early genes ICP0, ICP22, ICP27 and ICP47, all of which are required for the expression of early and late viral gene products. Using immunofluorescence and western blot analysis, we found that the antiviral effect of MD was independent of the activation of the NF-κB and MAPK pathways. Furthermore, we found that the reduction in the transcription of viral immediate early genes was not related to the promoter activities of ICP0. CONCLUSIONS: Therefore, the identification of compound MD as an inhibitor of toxicity induced by HSV-1 highlights its potential use in the development of novel anti-HSV-1 drugs.


Assuntos
Antivirais/farmacologia , Genes Precoces , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/genética , Mitoxantrona/farmacologia , Animais , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Bibliotecas de Moléculas Pequenas , Transcrição Gênica
17.
J Pharmacol Sci ; 137(3): 256-264, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30064819

RESUMO

Aberrant activation of Hedgehog (Hh) signaling is associated with the development of numerous human cancers. Vismodegib is the first Hh inhibitor approved for anti-cancer therapy by targeting Smoothened (SMO), a critical regulator of the Hh pathway. However, acquisition of drug resistance to vismodegib occurs overtime. Apoptosis is a prevalent form of programmed cell death that is executed by caspases. Induction of tumor cell apoptosis represents an attractive therapeutic strategy to eliminate tumor cells. To explore new Hh antagonists with apoptosis-inducing activity, we screened a set of ∼300 potential SMO antagonists with novel scaffold structures. Hh003 was found to induce caspase-dependent apoptosis while vismodegib did not activate apoptotic response in human colon and pancreatic cancer cells. Compared to vismodegib, Hh003 exerted similar inhibitory effects on the Hh pathway. Hh003 could induce caspase8 activation and the silence of caspase8 significantly inhibited Hh003-induced apoptosis. Remarkably, Hh003 showed stronger inhibitory effects on the formation of tumor colonies in vitro and colorectal tumor growth in vivo than vismodegib. These findings suggest that Hh003 exerts enhanced anti-tumor effects by activating caspase8-dependent apoptosis compared to vismodegib. The combined property of Hh inhibition and apoptosis induction of Hh003 presents great potential for the development of novel anti-cancer therapy.


Assuntos
Anilidas/farmacologia , Antineoplásicos/farmacologia , Apoptose/genética , Caspase 8/metabolismo , Neoplasias do Colo/patologia , Proteínas Hedgehog/antagonistas & inibidores , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Terapia de Alvo Molecular , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais/fisiologia
18.
J Virol ; 90(2): 1088-95, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26559832

RESUMO

UNLABELLED: Receptor-interacting protein kinase 3 (RIP3) and its substrate mixed-lineage kinase domain-like protein (MLKL) are core regulators of programmed necrosis. The elimination of pathogen-infected cells by programmed necrosis acts as an important host defense mechanism. Here, we report that human herpes simplex virus 1 (HSV-1) and HSV-2 had opposite impacts on programmed necrosis in human cells versus their impacts in mouse cells. Similar to HSV-1, HSV-2 infection triggered programmed necrosis in mouse cells. However, neither HSV-1 nor HSV-2 infection was able to induce programmed necrosis in human cells. Moreover, HSV-1 or HSV-2 infection in human cells blocked tumor necrosis factor (TNF)-induced necrosis by preventing the induction of an RIP1/RIP3 necrosome. The HSV ribonucleotide reductase large subunit R1 was sufficient to suppress TNF-induced necrosis, and its RIP homotypic interaction motif (RHIM) domain was required to disrupt the RIP1/RIP3 complex in human cells. Therefore, this study provides evidence that HSV has likely evolved strategies to evade the host defense mechanism of programmed necrosis in human cells. IMPORTANCE: This study demonstrated that infection with HSV-1 and HSV-2 blocked TNF-induced necrosis in human cells while these viruses directly activated programmed necrosis in mouse cells. Expression of HSV R1 suppressed TNF-induced necrosis of human cells. The RHIM domain of R1 was essential for its association with human RIP3 and RIP1, leading to disruption of the RIP1/RIP3 complex. This study provides new insights into the species-specific modulation of programmed necrosis by HSV.


Assuntos
Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 2/imunologia , Herpesvirus Humano 2/fisiologia , Interações Hospedeiro-Patógeno , Necrose , Ribonucleotídeo Redutases/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Fator de Necrose Tumoral alfa/metabolismo
19.
BMC Infect Dis ; 17(1): 217, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28320320

RESUMO

BACKGROUND: Herpes simplex virus (HSV) is a common human pathogen that causes a variety of diseases, including oral-labial, genital lesions and life-threatening encephalitis. The antiviral nucleoside analogues such as acyclovir are currently used in anti-HSV therapies; however, clinical overuse of these drugs has led to the emergence of drug-resistant viral strains. Hence, there is an urgent need to develop new anti-HSV agents. METHODS: To identify novel anti-HSV-1 compounds, we screened the LOPAC small scale library of 1280 bioactive compounds to identify inhibitors of HSV-1-induced necroptosis. Further experiments including western blot analysis, Q-PCR analysis and immunohistochemistry were performed to explore the antiviral mechanism of the compounds. RESULTS: Here, we identified PHA767491 as a new inhibitor of HSV. PHA767491 potently blocked the proliferation of HSV in cells, as well as HSV induced cell death. Further, we found that PHA767491 strongly inhibited HSV infection post viral entry. Moreover, PHA767491 reduced the expression of viral genes required for DNA synthesis including UL30/42 DNA polymerase and UL5/8/52 helicase-primase complex. The essential immediate early (IE) genes such as ICP4 and ICP27 are critical for the expression of the early and late genes. Of note, PHA767491 inhibited the expression of all IE genes of both HSV-1 and HSV-2. Importantly, PHA767491 reduced viral titers in the tissues from the mice infected with HSV-1. Consistently, immunohistochemistry analysis showed that PHA767491 dramatically attenuated expression of viral protein gB in the livers. CONCLUSIONS: Taken together, PHA767491 has potent anti-HSV activity by inhibiting viral replication both in vitro and in mouse model. Thus, PHA767491 could be a promising agent for the development of new anti-HSV therapy.


Assuntos
Antivirais/farmacologia , Herpes Simples/tratamento farmacológico , Herpes Simples/virologia , Piperidonas/farmacologia , Piperidonas/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Proteínas Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/uso terapêutico , Linhagem Celular , Modelos Animais de Doenças , Farmacorresistência Viral , Regulação Viral da Expressão Gênica , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Humanos , Camundongos , Testes de Sensibilidade Microbiana
20.
Cell Mol Life Sci ; 73(11-12): 2177-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27066893

RESUMO

Necroptosis has been extensively studied recently, and the receptor-interacting kinase 3 (RIP3 or RIPK3) and its substrate, the pseudokinase mixed lineage kinase domain-like protein, have been discovered to be core components of this process. Classical necroptosis requires RIP1 (or RIPK1) for the activation of RIP3 through the induction of RIP1/RIP3 necrosomes. Increasing evidence from genetic and pharmacological studies has been expanding the view that necroptosis plays important roles in the etiology and/or progression of many human diseases, such as pancreatitis, ischemic injury, and neurodegenerative diseases, among others. Ongoing progress in translational research about necroptosis has highlighted the increasingly important need for the identification of biomarkers for use in disease diagnosis, monitoring, and drug development. This review presents a discussion of the current status of biomarkers that can be used to detect necroptosis both in vitro and in vivo.


Assuntos
Apoptose/fisiologia , Necrose/patologia , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Biomarcadores/metabolismo , Citocinas/metabolismo , Humanos , Camundongos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA