Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 277(Pt 4): 134536, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111481

RESUMO

In recent years, nanocellulose (NC) has gained significant attention due to its remarkable properties, such as adjustable surface chemistry, extraordinary biological properties, low toxicity and low density. This review summarizes the preparation of NC derived from lignocellulosic biomass (LCB), including cellulose nanofibrils (CNF), cellulose nanocrystals (CNC), and lignin-containing cellulose nanofibrils (LCNF). It focuses on examining the impact of non-cellulosic components such as lignin and hemicellulose on the functionality of NC. Additionally, various surface modification strategies of NC were discussed, including esterification, etherification and silylation. The review also emphasizes the progress of NC application in areas such as Pickering emulsions, food packaging materials, food additives, and hydrogels. Finally, the prospects for producing NC from LCB and its application in food-related fields are examined. This work aims to demonstrate the effective benefits of preparing NC from lignocellulosic biomass and its potential application in the food industry.

2.
Elife ; 122023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099574

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is the second most frequent of the keratinocyte-derived malignancies with actinic keratosis (AK) as a precancerous lesion. To comprehensively delineate the underlying mechanisms for the whole progression from normal skin to AK to invasive cSCC, we performed single-cell RNA sequencing (scRNA-seq) to acquire the transcriptomes of 138,982 cells from 13 samples of six patients including AK, squamous cell carcinoma in situ (SCCIS), cSCC, and their matched normal tissues, covering comprehensive clinical courses of cSCC. We identified diverse cell types, including important subtypes with different gene expression profiles and functions in major keratinocytes. In SCCIS, we discovered the malignant subtypes of basal cells with differential proliferative and migration potential. Differentially expressed genes (DEGs) analysis screened out multiple key driver genes including transcription factors along AK to cSCC progression. Immunohistochemistry (IHC)/immunofluorescence (IF) experiments and single-cell ATAC sequencing (scATAC-seq) data verified the expression changes of these genes. The functional experiments confirmed the important roles of these genes in regulating cell proliferation, apoptosis, migration, and invasion in cSCC tumor. Furthermore, we comprehensively described the tumor microenvironment (TME) landscape and potential keratinocyte-TME crosstalk in cSCC providing theoretical basis for immunotherapy. Together, our findings provide a valuable resource for deciphering the progression from AK to cSCC and identifying potential targets for anticancer treatment of cSCC.


Assuntos
Carcinoma de Células Escamosas , Ceratose Actínica , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/metabolismo , Ceratose Actínica/genética , Ceratose Actínica/metabolismo , Ceratose Actínica/patologia , Neoplasias Cutâneas/patologia , Queratinócitos/metabolismo , Transcriptoma , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA