Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mediators Inflamm ; 2021: 8874339, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33505220

RESUMO

Causes of mortality from COVID-19 include respiratory failure, heart failure, and sepsis/multiorgan failure. TLR4 is an innate immune receptor on the cell surface that recognizes pathogen-associated molecular patterns (PAMPs) including viral proteins and triggers the production of type I interferons and proinflammatory cytokines to combat infection. It is expressed on both immune cells and tissue-resident cells. ACE2, the reported entry receptor for SARS-CoV-2, is only present on ~1-2% of the cells in the lungs or has a low pulmonary expression, and recently, the spike protein has been proposed to have the strongest protein-protein interaction with TLR4. Here, we review and connect evidence for SARS-CoV-1 and SARS-CoV-2 having direct and indirect binding to TLR4, together with other viral precedents, which when combined shed light on the COVID-19 pathophysiological puzzle. We propose a model in which the SARS-CoV-2 spike glycoprotein binds TLR4 and activates TLR4 signalling to increase cell surface expression of ACE2 facilitating entry. SARS-CoV-2 also destroys the type II alveolar cells that secrete pulmonary surfactants, which normally decrease the air/tissue surface tension and block TLR4 in the lungs thus promoting ARDS and inflammation. Furthermore, SARS-CoV-2-induced myocarditis and multiple-organ injury may be due to TLR4 activation, aberrant TLR4 signalling, and hyperinflammation in COVID-19 patients. Therefore, TLR4 contributes significantly to the pathogenesis of SARS-CoV-2, and its overactivation causes a prolonged or excessive innate immune response. TLR4 appears to be a promising therapeutic target in COVID-19, and since TLR4 antagonists have been previously trialled in sepsis and in other antiviral contexts, we propose the clinical trial testing of TLR4 antagonists in the treatment of severe COVID-19. Also, ongoing clinical trials of pulmonary surfactants in COVID-19 hold promise since they also block TLR4.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/imunologia , Regulação da Expressão Gênica , SARS-CoV-2 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Receptor 4 Toll-Like/metabolismo , Antivirais/uso terapêutico , Proliferação de Células , Humanos , Imunidade Inata , Inflamação , Interferon Tipo I/metabolismo , Pulmão/metabolismo , Miocárdio/metabolismo , Ligação Proteica , Transdução de Sinais , Glicoproteína da Espícula de Coronavírus/metabolismo , Tensoativos
2.
Basic Res Cardiol ; 112(4): 37, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28526910

RESUMO

Cardiac physiology and hypertrophy are regulated by the phosphorylation status of many proteins, which is partly controlled by a poorly defined type 2A protein phosphatase-alpha4 intracellular signalling axis. Quantitative PCR analysis revealed that mRNA levels of the type 2A catalytic subunits were differentially expressed in H9c2 cardiomyocytes (PP2ACß > PP2ACα > PP4C > PP6C), NRVM (PP2ACß > PP2ACα = PP4C = PP6C), and adult rat ventricular myocytes (PP2ACα > PP2ACß > PP6C > PP4C). Western analysis confirmed that all type 2A catalytic subunits were expressed in H9c2 cardiomyocytes; however, PP4C protein was absent in adult myocytes and only detectable following 26S proteasome inhibition. Short-term knockdown of alpha4 protein expression attenuated expression of all type 2A catalytic subunits. Pressure overload-induced left ventricular (LV) hypertrophy was associated with an increase in both PP2AC and alpha4 protein expression. Although PP6C expression was unchanged, expression of PP6C regulatory subunits (1) Sit4-associated protein 1 (SAP1) and (2) ankyrin repeat domain (ANKRD) 28 and 44 proteins was elevated, whereas SAP2 expression was reduced in hypertrophied LV tissue. Co-immunoprecipitation studies demonstrated that the interaction between alpha4 and PP2AC or PP6C subunits was either unchanged or reduced in hypertrophied LV tissue, respectively. Phosphorylation status of phospholemman (Ser63 and Ser68) was significantly increased by knockdown of PP2ACα, PP2ACß, or PP4C protein expression. DNA damage assessed by histone H2A.X phosphorylation (γH2A.X) in hypertrophied tissue remained unchanged. However, exposure of cardiomyocytes to H2O2 increased levels of γH2A.X which was unaffected by knockdown of PP6C expression, but was abolished by the short-term knockdown of alpha4 expression. This study illustrates the significance and altered activity of the type 2A protein phosphatase-alpha4 complex in healthy and hypertrophied myocardium.


Assuntos
Hipertrofia Ventricular Esquerda/enzimologia , Miócitos Cardíacos/enzimologia , Fosfoproteínas/metabolismo , Proteína Fosfatase 2/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Animais Recém-Nascidos , Linhagem Celular , Dano ao DNA , Regulação Enzimológica da Expressão Gênica , Histonas/metabolismo , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Chaperonas Moleculares , Miócitos Cardíacos/patologia , Estresse Oxidativo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas/genética , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Fosfatase 2/genética , Interferência de RNA , Ratos Sprague-Dawley , Ratos Wistar , Transfecção
3.
Breast Cancer Res ; 13(1): R5, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21241485

RESUMO

INTRODUCTION: In cancer cells, elevated transcription factor-related Brn-3a regulator isolated from brain cDNA (Brn-3b) transcription factor enhances proliferation in vitro and increases tumour growth in vivo whilst conferring drug resistance and migratory potential, whereas reducing Brn-3b slows growth both in vitro and in vivo. Brn-3b regulates distinct groups of key target genes that control cell growth and behaviour. Brn-3b is elevated in >65% of breast cancer biopsies, but mechanisms controlling its expression in these cells are not known. METHODS: Bioinformatics analysis was used to identify the regulatory promoter region and map transcription start site as well as transcription factor binding sites. Polymerase chain reaction (PCR) cloning was used to generate promoter constructs for reporter assays. Chromatin immunoprecipitation and site-directed mutagenesis were used to confirm the transcription start site and autoregulation. MCF-7 and Cos-7 breast cancer cells were used. Cells grown in culture were transfected with Brn-3b promoter and treated with growth factors or estradiol to test for effects on promoter activity. Quantitative reverse transcriptase PCR assays and immunoblotting were used to confirm changes in gene and protein expression. RESULTS: We cloned the Brn-3b promoter, mapped the transcription start site and showed stimulation by estradiol and growth factors, nerve growth factor and epidermal growth factor, which are implicated in breast cancer initiation and/or progression. The effects of growth factors are mediated through the mitogen-activated protein kinase pathway, whereas hormone effects act via oestrogen receptor α (ERα). Brn-3b also autoregulates its expression and cooperates with ERα to further enhance levels. CONCLUSIONS: Key regulators of growth in cancer cells, for example, oestrogens and growth factors, can stimulate Brn-3b expression, and autoregulation also contributes to increasing Brn-3b in breast cancers. Since increasing Brn-3b profoundly enhances growth in these cells, understanding how Brn-3b is increased in breast cancers will help to identify strategies for reducing its expression and thus its effects on target genes, thereby reversing its effects in breast cancer cells.


Assuntos
Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator de Transcrição Brn-3B/genética , Sítios de Ligação/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Clonagem Molecular , Fator de Crescimento Epidérmico/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Ordem dos Genes , Homeostase , Humanos , Mutação , Fator de Crescimento Neural/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Fator de Transcrição Brn-3B/metabolismo , Sítio de Iniciação de Transcrição
4.
Curr Res Physiol ; 4: 103-118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746830

RESUMO

In modern society, cardiovascular disease remains the biggest single threat to life, being responsible for approximately one third of worldwide deaths. Male prevalence is significantly higher than that of women until after menopause, when the prevalence of CVD increases in females until it eventually exceeds that of men. Because of the coincidence of CVD prevalence increasing after menopause, the role of estrogen in the cardiovascular system has been intensively researched during the past two decades in vitro, in vivo and in observational studies. Most of these studies suggested that endogenous estrogen confers cardiovascular protective and anti-inflammatory effects. However, clinical studies of the cardioprotective effects of hormone replacement therapies (HRT) not only failed to produce proof of protective effects, but also revealed the potential harm estrogen could cause. The "critical window of hormone therapy" hypothesis affirms that the moment of its administration is essential for positive treatment outcomes, pre-menopause (3-5 years before menopause) and immediately post menopause being thought to be the most appropriate time for intervention. Since many of the cardioprotective effects of estrogen signaling are mediated by effects on the vasculature, this review aims to discuss the effects of estrogen on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) with a focus on the role of estrogen receptors (ERα, ERß and GPER) in triggering the more recently discovered rapid, or membrane delimited (non-genomic), signaling cascades that are vital for regulating vascular tone, preventing hypertension and other cardiovascular diseases.

5.
Cell Death Dis ; 10(8): 621, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31413277

RESUMO

Adult hearts respond to increased workload such as prolonged stress or injury, by undergoing hypertrophic growth. During this process, the early adaptive responses are important for maintaining cardiac output whereas at later stages, pathological responses such as cardiomyocyte apoptosis and fibrosis cause adverse remodelling, that can progress to heart failure. Yet the factors that control transition from adaptive responses to pathological remodelling in the heart are not well understood. Here we describe the POU4F2/Brn-3b transcription factor (TF) as a novel regulator of adaptive hypertrophic responses in adult hearts since Brn-3b mRNA and protein are increased in angiotensin-II (AngII) treated mouse hearts with concomitant hypertrophic changes [increased heart weight:body weight (HW:BW) ratio]. These effects occur specifically in cardiomyocytes because Brn-3b expression is increased in AngII-treated primary cultures of neonatal rat ventricular myocytes (NRVM) or foetal heart-derived H9c2 cells, which undergo characteristic sarcomeric re-organisation seen in hypertrophic myocytes and express hypertrophic markers, ANP/ßMHC. The Brn-3b promoter is activated by known hypertrophic signalling pathways e.g. p42/p44 mitogen-activated protein kinase (MAPK/ERK1/2) or calcineurin (via NFAT). Brn-3b target genes, e.g. cyclin D1, GLUT4 and Bax, are increased at different stages following AngII treatment, supporting distinct roles in cardiac responses to stress. Furthermore, hearts from male Brn-3b KO mutant mice display contractile dysfunction at baseline but also attenuated hypertrophic responses to AngII treatment. Hearts from AngII-treated male Brn-3b KO mice develop further contractile dysfunction linked to extensive fibrosis/remodelling. Moreover, known Brn-3b target genes, e.g. GLUT4, are reduced in AngII-treated Brn-3b KO hearts, suggesting that Brn-3b and its target genes are important in driving adaptive hypertrophic responses in stressed heart.


Assuntos
Doenças Cardiovasculares/genética , Hipertrofia/genética , Miocárdio/metabolismo , Fator de Transcrição Brn-3B/genética , Angiotensina II/farmacologia , Animais , Animais Recém-Nascidos , Apoptose , Calcineurina/farmacologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Ciclina D1/genética , Regulação da Expressão Gênica/genética , Transportador de Glucose Tipo 4/genética , Humanos , Hipertrofia/metabolismo , Hipertrofia/patologia , Camundongos , Camundongos Knockout , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , Ratos , Proteína X Associada a bcl-2/antagonistas & inibidores , Proteína X Associada a bcl-2/genética
6.
Cell Stress Chaperones ; 13(3): 297-312, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18368538

RESUMO

The Brn-3 family of transcription factors play a critical role in regulating expression of genes that control cell fate, including the small heat shock protein Hsp27. The aim of this study was to investigate the relationship between Brn-3a and Brn-3b and Hsp27 expression in the developing rodent heart. Brn-3a and Brn-3b were detected from embryonic days 9.5-10.5 (E9.5-E10.5) in the mouse heart, with significant increases seen later during development. Two isoforms (long and short) of each protein were detected during embryogenesis and postnatally. Brn-3a messenger RNA (mRNA) and protein were localized by E13.0 to the atrio-ventricular (AV) valve cushions and leaflets, outflow tract (OFT), epicardium and cardiac ganglia. By E14.5, Brn-3a was also localised to the septa and compact ventricular myocardium. An increase in expression of the long Brn-3a(l) isoform between E17 and adult coincided with a decrease in expression of Brn-3b(l) and a marked increase in expression of Hsp27. Hearts from Brn-3a-/- mice displayed a partially penetrant phenotype marked by thickening of the endocardial cushions and AV valve leaflets and hypoplastic ventricular myocardium. Loss of Brn-3a was correlated with a compensatory increase in Brn-3b and GATA3 mRNA but no change in Hsp27 mRNA. Reporter assays in isolated cardiomyocytes demonstrated that both Brn-3a and Brn-3b activate the hsp27 promoter via a consensus Brn-3-binding site. Therefore, Brn-3 POU factors may play an important role in the development and maintenance of critical cell types and structures within the heart, in part via developmental regulation of myocardial Hsp27 expression. Furthermore, Brn-3a may be necessary for correct valve and myocardial remodelling and maturation.


Assuntos
Regulação da Expressão Gênica , Proteínas de Choque Térmico , Proteínas de Homeodomínio/metabolismo , Miocárdio/metabolismo , Fator de Transcrição Brn-3A/metabolismo , Fator de Transcrição Brn-3B/metabolismo , Animais , Sequência de Bases , Células Cultivadas , Genótipo , Proteínas de Choque Térmico HSP27 , Coração/anatomia & histologia , Coração/embriologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Homeodomínio/genética , Camundongos , Dados de Sequência Molecular , Miocárdio/citologia , Fator de Transcrição Brn-3A/genética , Fator de Transcrição Brn-3B/genética
7.
Cardiovasc Res ; 74(3): 466-70, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17399693

RESUMO

OBJECTIVES: Our aim was to examine the role of mitogen-activated protein kinase kinase 3 (MKK3) in the development of left ventricular (LV) remodeling following myocardial infarction (MI). METHODS: MKK3-null mice were subjected to permanent coronary artery ligation. Twenty-eight days after MI, haemodynamics in male mkk3+/+(WT) and mkk3-/-(KO) littermates were assessed using a pressure-conductance catheter. MI groups were compared to un-operated time-matched WT and KO controls. RESULTS: MI caused significant LV contractile dysfunction and dilatation which did not differ by genotype. Detailed morphometric analysis of excised hearts confirmed these similar global indices of remodeling and also demonstrated that pathological changes within remote myocardium and scar did not differ between KO and WT hearts. CONCLUSIONS: Despite numerous lines of evidence suggesting MKK3 is the relevant kinase upstream of p38 mitogen-activated protein kinase in LV remodeling these processes can continue in its absence.


Assuntos
MAP Quinase Quinase 3/fisiologia , Infarto do Miocárdio/enzimologia , Miocárdio/enzimologia , Remodelação Ventricular/fisiologia , Animais , Dilatação Patológica , Immunoblotting , MAP Quinase Quinase 3/genética , Masculino , Camundongos , Camundongos Knockout , Contração Miocárdica , Função Ventricular Esquerda
8.
Cardiovasc Res ; 114(1): 138-157, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29045568

RESUMO

Aims: PKN1 is a stress-responsive protein kinase acting downstream of small GTP-binding proteins of the Rho/Rac family. The aim was to determine its role in endogenous cardioprotection. Methods and results: Hearts from PKN1 knockout (KO) or wild type (WT) littermate control mice were perfused in Langendorff mode and subjected to global ischaemia and reperfusion (I/R). Myocardial infarct size was doubled in PKN1 KO hearts compared to WT hearts. PKN1 was basally phosphorylated on the activation loop Thr778 PDK1 target site which was unchanged during I/R. However, phosphorylation of p42/p44-MAPK was decreased in KO hearts at baseline and during I/R. In cultured neonatal rat ventricular cardiomyocytes (NRVM) and NRVM transduced with kinase dead (KD) PKN1 K644R mutant subjected to simulated ischaemia/reperfusion (sI/R), PhosTag® gel analysis showed net dephosphorylation of PKN1 during sI and early R despite Thr778 phosphorylation. siRNA knockdown of PKN1 in NRVM significantly decreased cell survival and increased cell injury by sI/R which was reversed by WT- or KD-PKN1 expression. Confocal immunofluorescence analysis of PKN1 in NRVM showed increased localization to the sarcoplasmic reticulum (SR) during sI. GC-MS/MS and immunoblot analysis of PKN1 immunoprecipitates following sI/R confirmed interaction with CamKIIδ. Co-translocation of PKN1 and CamKIIδ to the SR/membrane fraction during sI correlated with phospholamban (PLB) Thr17 phosphorylation. siRNA knockdown of PKN1 in NRVM resulted in increased basal CamKIIδ activation and increased PLB Thr17 phosphorylation only during sI. In vivo PLB Thr17 phosphorylation, Sarco-Endoplasmic Reticulum Ca2+ ATPase (SERCA2) expression and Junctophilin-2 (Jph2) expression were also basally increased in PKN1 KO hearts. Furthermore, in vivo P-V loop analysis of the beat-to-beat relationship between rate of LV pressure development or relaxation and end diastolic P (EDP) showed mild but significant systolic and diastolic dysfunction with preserved ejection fraction in PKN1 KO hearts. Conclusion: Loss of PKN1 in vivo significantly reduces endogenous cardioprotection and increases myocardial infarct size following I/R injury. Cardioprotection by PKN1 is associated with reduced CamKIIδ-dependent PLB Thr17 phosphorylation at the SR and therefore may stabilize the coupling of SR Ca2+ handling and contractile function, independent of its kinase activity.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Contração Miocárdica , Infarto do Miocárdio/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miocárdio/metabolismo , Proteína Quinase C/deficiência , Disfunção Ventricular Esquerda/enzimologia , Função Ventricular Esquerda , Animais , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Diástole , Modelos Animais de Doenças , Humanos , Proteínas de Membrana/metabolismo , Camundongos Knockout , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Fosforilação , Proteína Quinase C/genética , Ratos Sprague-Dawley , Retículo Sarcoplasmático/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Índice de Gravidade de Doença , Volume Sistólico , Sístole , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/fisiopatologia , Pressão Ventricular
9.
Cancer Res ; 65(8): 3072-80, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15833836

RESUMO

In breast cancer, overexpression of the small heat shock protein, HSP-27, is associated with increased anchorage-independent growth, increased invasiveness, and resistance to chemotherapeutic drugs and is associated with poor prognosis and reduced disease-free survival. Therefore, factors that increase the expression of HSP-27 in breast cancer are likely to affect the prognosis and outcome of treatment. In this study, we show a strong correlation between elevated levels of the Brn-3b POU transcription factor and high levels of HSP-27 protein in manipulated MCF-7 breast cancer cells as well as in human breast biopsies. Conversely, HSP-27 is decreased on loss of Brn-3b. In cotransfection assays, Brn-3b can strongly transactivate the HSP-27 promoter, supporting a role for direct regulation of HSP-27 expression. Brn-3b also cooperates with the estrogen receptor (ER) to facilitate maximal stimulation of the HSP-27 promoter, with significantly enhanced activity of this promoter observed on coexpression of Brn-3b and ER compared with either alone. RNA interference and site-directed mutagenesis support the requirement for the Brn-3b binding site on the HSP-27 promoter, which facilitates maximal transactivation either alone or on interaction with the ER. Chromatin immunoprecipitation provides evidence for association of Brn-3b with the HSP-27 promoter in the intact cell. Thus, Brn-3b can, directly and indirectly (via interaction with the ER), activate HSP-27 expression, and this may represent one mechanism by which Brn-3b mediates its effects in breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ligação a DNA/biossíntese , Proteínas de Choque Térmico/biossíntese , Fatores de Transcrição/biossíntese , Sequência de Bases , Biópsia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP90/biossíntese , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico/genética , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Interferência de RNA , Receptores de Estrogênio/biossíntese , Receptores de Estrogênio/genética , Fator de Transcrição Brn-3 , Fator de Transcrição Brn-3B , Fatores de Transcrição/genética , Ativação Transcricional , Transfecção
10.
Cardiovasc Res ; 69(1): 164-77, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16219301

RESUMO

OBJECTIVE: Interleukin-6 (IL-6) is a pro-inflammatory cytokine which is a prognostic marker associated with left ventricular contractile dysfunction and heart failure. On the other hand, IL-6 activates signalling pathways which mediate delayed ischemic preconditioning. We have therefore studied the cellular mechanisms of IL-6-induced cardioprotection. METHODS: Inducible nitric oxide synthase (iNOS) expression, cardiomyocyte calcium handling, mitochondrial energetics, and the activation of protective signalling pathways in response to IL-6 were studied in a model of simulated ischemia/reperfusion (sI/R) in isolated neonatal rat ventricular cardiomyocytes. RESULTS: Reperfusion after sI/R induced a rise in cytosolic [Ca2+], a loss of cell morphology and integrity, and a transient increase in mitochondrial potential (Deltapsi m), followed by mitochondrial swelling and collapse of Deltapsi m. Pre-treatment of cardiomyocytes with 10 ng/ml IL-6 for 6 h, 24 h prior to sI/R prevented the secondary rise in cytosolic [Ca2+] and induced expression of iNOS and NO-dependent protection against sI/R injury. The protection against sI/R was concomitant with a NO-dependent reduction in the amplitude of cytosolic Ca2+ transients. IL-6 induced an increase in inner mitochondrial membrane polarisation and increased mitochondrial Ca2+ loading (rhod-2 fluorescence) at baseline, but prevented the reperfusion-induced changes in mitochondrial function. IL-6 pre-treatment also resulted in activation of the phosphatidylinositol (PI) 3-kinase/Akt pathway, and both iNOS induction and IL-6-dependent protection were blocked by the PI 3-kinase inhibitor wortmannin. CONCLUSION: IL-6 induces a PI 3-kinase and NO-dependent protection of cardiomyocytes, which is associated with alterations in mitochondrial Ca2+ handling, inhibition of reperfusion-induced mitochondrial depolarisation, swelling and loss of structural integrity, and suppression of cytosolic Ca2+ transients.


Assuntos
Interleucina-6/farmacologia , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Androstadienos/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Citosol/metabolismo , Inibidores Enzimáticos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Microscopia Confocal , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Ratos , Ratos Sprague-Dawley , Retículo Sarcoplasmático/metabolismo , Wortmanina
11.
Cardiovasc Res ; 71(4): 672-83, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16828070

RESUMO

OBJECTIVE: To determine the role of calcineurin and Src tyrosine kinase in the regulation of inducible nitric oxide synthase (iNOS) expression and protection in cardiomyocytes. METHODS: iNOS expression was studied in isolated neonatal rat ventricular myocyte cultures in response to bacterial lipopolysaccharide (LPS) or following transfection with constitutively active calcineurin or Src and in hearts isolated from wild-type or calcineruin Abeta knockout mice. Cell injury in response to simulated ischemia-reperfusion was studied following overexpression of active calcineurin. Regulation of the iNOS gene promoter by calcineurin was studied using promoter-luciferase reporter and chromatin immunoprecipitation assays. RESULTS: Overexpression of constitutively active Src co-operated with [Ca2+]c elevation to induce iNOS expression, and LPS-induced iNOS expression was abrogated by pharmacological inhibition of calcineurin or tyrosine kinase. LPS also induced tyrosine kinase-dependent but calcineurin-independent phosphorylation of Src Tyr418. LPS induced myocardial iNOS expression in wild-type but not calcineurin Abeta knockout mice. Overexpression of constitutively active calcinuerin in isolated cardiomyocytes caused dephosphorylation and nuclear accumulation of the c1 isoform of nuclear factor of activated T-cells (NFATc1), induced strong iNOS expression, and induced NOS-dependent protection against simulated ischemia-reperfusion prior to cardiomyocyte hypertrophy. Co-transfection of a mouse iNOS promoter-luciferase reporter in combination with active calcineurin and wild-type or dominant negative Src confirmed that constitutive activation of calcineurin was sufficient for transactivation. Chromatin immunoprecipitation confirmed calcineurin-dependent in vivo binding of NFATc1 to consensus sites within the iNOS promoter. CONCLUSIONS: These results support a cardioprotective role for calcineurin mediated by NFAT-dependent induction of iNOS expression and co-operativity between calcineurin and Src.


Assuntos
Calcineurina/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Regulação para Cima , Animais , Calcineurina/genética , Cálcio/metabolismo , Células Cultivadas , Imunoprecipitação , Ionomicina/farmacologia , Ionóforos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Ratos , Transdução de Sinais , Transfecção/métodos , Quinases da Família src/metabolismo
12.
Cell Death Dis ; 8(6): e2861, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28594399

RESUMO

Congenital heart defects contribute to embryonic or neonatal lethality but due to the complexity of cardiac development, the molecular changes associated with such defects are not fully understood. Here, we report that transcription factors (TFs) Brn-3a (POU4F1) and Brn-3b (POU4F2) are important for normal cardiac development. Brn-3a directly represses Brn-3b promoter in cardiomyocytes and consequently Brn-3a knockout (KO) mutant hearts express increased Brn-3b mRNA during mid-gestation, which is linked to hyperplastic growth associated with elevated cyclin D1, a known Brn-3b target gene. However, during late gestation, Brn-3b can cooperate with p53 to enhance transcription of pro-apoptotic genes e.g. Bax, thereby increasing apoptosis and contribute to morphological defects such as non-compaction, ventricular wall/septal thinning and increased crypts/fissures, which may cause lethality of Brn-3a KO mutants soon after birth. Despite this, early embryonic lethality in e9.5 double KO (Brn-3a-/- : Brn-3b-/-) mutants indicate essential functions with partial redundancy during early embryogenesis. High conservation between mammals and zebrafish (ZF) Brn-3b (87%) or Brn-3a (76%) facilitated use of ZF embryos to study potential roles in developing heart. Double morphant embryos targeted with morpholino oligonucleotides to both TFs develop significant cardiac defects (looping abnormalities and valve defects) suggesting essential roles for Brn-3a and Brn-3b in developing hearts.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Coração/embriologia , Proteínas de Homeodomínio/biossíntese , Fator de Transcrição Brn-3A/biossíntese , Fator de Transcrição Brn-3B/biossíntese , Animais , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/genética , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Knockout , Fator de Transcrição Brn-3A/genética , Fator de Transcrição Brn-3B/genética
13.
Circ Res ; 93(3): 254-61, 2003 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-12829618

RESUMO

The ischemic activation of p38alpha mitogen-activated protein kinase (p38alpha-MAPK) is thought to contribute to myocardial injury. Under other circumstances, activation is through dual phosphorylation by MAPK kinase 3 (MKK3). Therefore, the mkk3-/- murine heart should be protected during ischemia. In retrogradely perfused mkk3-/- and mkk3+/+ mouse hearts subjected to 30 minutes of global ischemia and 120 minutes of reperfusion, infarction/risk volume was similar (50+/-5 versus 51+/-4, P=0.93, respectively), as was intraischemic p38-MAPK phosphorylation (10 minutes ischemia as percent basal, 608+/-224 versus 384+/-104, P=0.43, respectively). This occurred despite undetectable activation of MKK3/6 in mkk3-/- hearts. However, tumor necrosis factor (TNF)-induced p38-MAPK phosphorylation was markedly diminished in mkk3-/- vs mkk3+/+ hearts (percent basal, 127+/-23 versus 540+/-267, respectively, P=0.04), suggesting an MKK-independent activation mechanism by ischemia. Hence, we examined p38-MAPK activation by TAB1-associated autophosphorylation. In wild-type mice and mkk3-/- mice, the p38-MAPK catalytic site inhibitor SB203580 (1 micromol/L) diminished phosphorylation during ischemia versus control (10 minutes ischemia as percent basal, 143+/-2 versus 436+/-96, P=0.003, and 122+/-25 versus 623+/-176, P=0.05, respectively) and reduced infarction volume (infarction/risk volume, 57+/-5 versus 36+/-3, P<0.001, and 50+/-5 versus 29+/-3, P=0.003, respectively) but did not alter TNF-induced activation, although in homogenates of ischemic hearts but not TNF-exposed hearts, p38-MAPK was associated with TAB1. Furthermore, adenovirally expressed wild-type and drug-resistant p38alpha-MAPK, lacking the SB203580 binding site, was phosphorylated when H9c2 myoblasts were subjected to simulated ischemia. However, SB203580 (1 micromol/L) did not prevent the phosphorylation of resistant p38alpha-MAPK. These findings suggest the ischemic activation of p38-MAPK contributing to myocardial injury is by TAB1-associated autophosphorylation.


Assuntos
Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Isquemia Miocárdica/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Células Cultivadas , Progressão da Doença , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Técnicas In Vitro , MAP Quinase Quinase 3 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/deficiência , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Mioblastos/citologia , Mioblastos/metabolismo , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/patologia , Isquemia Miocárdica/complicações , Isquemia Miocárdica/patologia , Fosforilação/efeitos dos fármacos , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/genética , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transfecção , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno
14.
Mol Cell Biol ; 34(4): 574-94, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24298017

RESUMO

The pathways which regulate resolution of inflammation and contribute to positive remodeling of the myocardium following injury are poorly understood. Here we show that protein kinase C epsilon (PKCε) cooperates with the phosphatase calcineurin (CN) to potentiate induction of cardioprotective gene expression while suppressing expression of fibrosis markers. This was achieved by detailed analysis of the regulation of cyclooxygenase 2 (COX-2) expression as a marker gene and by using gene expression profiling to identify genes regulated by coexpression of CN-Aα/PKCε in adult rat cardiac myofibroblasts (ARVFs) on a larger scale. GeneChip analysis of CN-Aα/PKCε-coexpressing ARVFs showed that COX-2 provides a signature for wound healing and is associated with downregulation of fibrosis markers, including connective tissue growth factor (CTGF), fibronectin, and collagens Col1a1, Col3a1, Col6a3, Col11a1, Col12a1, and Col14a1, with concomitant upregulation of cardioprotection markers, including COX-2 itself, lipocalin 2 (LCN2), tissue inhibitor of metalloproteinase 1 (TIMP-1), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS). In primary rat cardiomyocyte cultures Toll-like receptor 4 (TLR4) agonist- or PKCε/CN-dependent COX-2 induction occurred in coresident fibroblasts and was blocked by selective inhibition of CN or PKC α/ε or elimination of fibroblasts. Furthermore, ectopic expression of PKCε and CN in ARVFs showed that the effects on COX-2 expression are mediated by specific NFAT sites within the COX-2 promoter as confirmed by site-directed mutagenesis and chromatin immunoprecipitation (ChIP). Therefore, PKCε may negatively regulate adverse myocardial remodeling by cooperating with CN to downregulate fibrosis and induce transcription of cardioprotective wound healing genes, including COX-2.


Assuntos
Calcineurina/genética , Ciclo-Oxigenase 2/metabolismo , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Proteína Quinase C-épsilon/genética , Receptor 4 Toll-Like/metabolismo , Cicatrização/genética , Animais , Calcineurina/metabolismo , Células Cultivadas , Ciclo-Oxigenase 2/genética , Fibrose/genética , Fibrose/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Proteína Quinase C-épsilon/metabolismo , Ratos , Receptor 4 Toll-Like/genética , Cicatrização/fisiologia
15.
Hypertension ; 63(5): 1056-62, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24516108

RESUMO

α-Calcitonin gene-related peptide (αCGRP) is a vasodilator, but there is limited knowledge of its long-term cardiovascular protective influence. We hypothesized that αCGRP protects against the onset and development of angiotensin II-induced hypertension and have identified protective mechanisms at the vascular level. Wild-type and αCGRP knockout mice that have similar baseline blood pressure were investigated in the angiotensin II hypertension model for 14 and 28 days. αCGRP knockout mice exhibited enhanced hypertension and aortic hypertrophy. αCGRP gene expression was increased in dorsal root ganglia and at the conduit and resistance vessel level of wild-type mice at both time points. ßCGRP gene expression was also observed and shown to be linked to plasma levels of CGRP. Mesenteric artery contractile and relaxant responses in vitro and endothelial NO synthase expression were similar in all groups. The aorta exhibited vascular hypertrophy, increased collagen formation, and oxidant stress markers in response to angiotensin II, with highest effects observed in αCGRP knockout mice. Gene and protein expression of endothelial NO synthase was lacking in the aortae after angiotensin II treatment, especially in αCGRP knockout mice. These results demonstrate the ongoing upregulation of αCGRP at the levels of both conduit and resistance vessels in vascular tissue in a model of hypertension and the direct association of this with protection against aortic vascular hypertrophy and fibrosis. This upregulation is maintained at a time when expression of aortic endothelial NO synthase and antioxidant defense genes have subsided, in keeping with the concept that the protective influence of αCGRP in hypertension may have been previously underestimated.


Assuntos
Aorta/patologia , Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Hipertensão/prevenção & controle , Hipertensão/fisiopatologia , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Angiotensina II/efeitos adversos , Angiotensina II/farmacologia , Animais , Aorta/metabolismo , Aorta/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/deficiência , Peptídeo Relacionado com Gene de Calcitonina/genética , Modelos Animais de Doenças , Endotelinas/metabolismo , Hipertensão/induzido quimicamente , Hipertrofia/fisiopatologia , Hipertrofia/prevenção & controle , Mesentério/metabolismo , Mesentério/patologia , Mesentério/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
16.
Cell Stress Chaperones ; 14(5): 477-89, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19214782

RESUMO

MAPKAPK-2 (MK2) is a protein kinase activated downstream of p38-MAPK which phosphorylates the small heat shock proteins HSP27 and alphaB crystallin and modulates p38-MAPK cellular distribution. p38-MAPK activation is thought to contribute to myocardial ischemic injury; therefore, we investigated MK2 effects on ischemic injury and p38 cellular localization using MK2-deficient mice (KO). Immunoblotting of extracts from Langendorff-perfused hearts subjected to aerobic perfusion or global ischemia or reperfusion showed that the total and phosphorylated p38 levels were significantly lower in MK2(-/-) compared to MK2(+/+) hearts at baseline, but the ratio of phosphorylated/total p38 was similar. These results were confirmed by cellular fractionation and immunoblotting for both cytosolic and nuclear compartments. Furthermore, HSP27 and alphaB crsytallin phosphorylation were reduced to baseline in MK2(-/-) hearts. On semiquantitative immunofluorescence laser confocal microscopy of hearts during aerobic perfusion, the mean total p38 fluorescence was significantly higher in the nuclear compared to extranuclear (cytoplasmic, sarcomeric, and sarcolemmal compartments) in MK2(+/+) hearts. However, although the increase in phosphorylated p38 fluorescence intensity in all compartments following ischemia in MK2(+/+) hearts was lost in MK2(-/-) hearts, it was basally elevated in nuclei of MK2(-/-) hearts and was similar to that seen during ischemia in MK2(+/+) hearts. Despite these differences, similar infarct volumes were recorded in wild-type MK2(+/+) and MK2(-/-) hearts, which were decreased by the p38 inhibitor SB203580 (1 microM) in both genotypes. In conclusion, p38 MAPK-induced myocardial ischemic injury is not modulated by MK2. However, the absence of MK2 perturbs the cellular distribution of p38. The preserved nuclear distribution of active p38 MAPK in MK2(-/-) hearts and the conserved response to SB203580 suggests that activation of p38 MAPK may contribute to injury independently of MK2.


Assuntos
Proteínas de Choque Térmico Pequenas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isquemia Miocárdica/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , Imidazóis/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Camundongos , Camundongos Knockout , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/deficiência , Transporte Proteico , Piridinas/farmacologia , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
17.
Mol Cell Proteomics ; 6(9): 1473-84, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17569890

RESUMO

Protein sulfenic acids are reactive intermediates in the catalytic cycles of many enzymes as well as the in formation of other redox states. Sulfenic acid formation is a reversible post-translational modification with potential for protein regulation. Dimedone (5,5-dimethyl-1,3-cyclohexanedione) is commonly used in vitro to study sulfenation of purified proteins, selectively "tagging" them, allowing monitoring by mass spectrometry. However dimedone is of little use in complex protein mixtures because selective monitoring of labeling is not possible. To address this issue, we synthesized a novel biotinylated derivative of dimedone, keeping the dione cassette required for sulfenate reactivity but adding the functionality of a biotin tag. Biotin-amido(5-methyl-5-carboxamidocyclohexane 1,3-dione) tetragol (biotin dimedone) was prepared in six steps, combining 3,5-dimethoxybenzoic acid (Birch reduction, ultimately leading to the dimedone unit with a carboxylate functionality), 1-amino-11-azido-3,6,9-trioxaundecane (a differentially substituted tetragol spacer), and biotin. We loaded biotin dimedone (0.1 mm, 30 min) into rat ventricular myocytes, treated them with H(2)O(2) (0.1-10,000 microm, 5 min), and monitored derivatization on Western blots using streptavidin-horseradish peroxidase. There was a dose-dependent increase in labeling of multiple proteins that was maximal at 0.1 or 1 mm H(2)O(2) and declined sharply below basal with 10 mm treatment. Cell-wide labeling was observed in fixed cells probed with avidin-FITC using a confocal fluorescence microscope. Similar H(2)O(2)-induced labeling was observed in isolated rat hearts. Hearts loaded and subjected to hypoxia showed a striking loss of labeling, which returned when oxygen was resupplied, highlighting the protein sulfenates as oxygen sensors. Cardiac proteins that were sulfenated during oxidative stress were purified with avidin-agarose and identified by separation of tryptic digests by liquid chromatography with on-line analysis by mass spectrometry.


Assuntos
Cicloexanonas/farmacologia , Proteômica/instrumentação , Ácidos Sulfênicos/química , Animais , Biotina/química , Cromatografia Líquida , Cicloexanonas/química , Peroxidase do Rábano Silvestre/metabolismo , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Modelos Químicos , Células Musculares/metabolismo , Oxirredução , Estresse Oxidativo , Oxigênio/metabolismo , Proteínas/química , Proteômica/métodos , Ratos , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA