Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
2.
Nature ; 547(7662): 227-231, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28581498

RESUMO

The regenerative capacity of the adult mammalian heart is limited, because of the reduced ability of cardiomyocytes to progress through mitosis. Endogenous cardiomyocytes have regenerative capacity at birth but this capacity is lost postnatally, with subsequent organ growth occurring through cardiomyocyte hypertrophy. The Hippo pathway, a conserved kinase cascade, inhibits cardiomyocyte proliferation in the developing heart to control heart size and prevents regeneration in the adult heart. The dystrophin-glycoprotein complex (DGC), a multicomponent transmembrane complex linking the actin cytoskeleton to extracellular matrix, is essential for cardiomyocyte homeostasis. DGC deficiency in humans results in muscular dystrophy, including the lethal Duchenne muscular dystrophy. Here we show that the DGC component dystroglycan 1 (Dag1) directly binds to the Hippo pathway effector Yap to inhibit cardiomyocyte proliferation in mice. The Yap-Dag1 interaction was enhanced by Hippo-induced Yap phosphorylation, revealing a connection between Hippo pathway function and the DGC. After injury, Hippo-deficient postnatal mouse hearts maintained organ size control by repairing the defect with correct dimensions, whereas postnatal hearts deficient in both Hippo and the DGC showed cardiomyocyte overproliferation at the injury site. In the hearts of mature Mdx mice (which have a point mutation in Dmd)-a model of Duchenne muscular dystrophy-Hippo deficiency protected against overload-induced heart failure.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Distrofina/metabolismo , Glicoproteínas/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Miócitos Cardíacos/citologia , Fosfoproteínas/metabolismo , Animais , Cardiomiopatias , Proteínas de Ciclo Celular , Proliferação de Células , Distroglicanas/metabolismo , Distrofina/deficiência , Distrofina/genética , Glicoproteínas/deficiência , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/prevenção & controle , Via de Sinalização Hippo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Complexos Multiproteicos/deficiência , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Miócitos Cardíacos/metabolismo , Tamanho do Órgão , Fosforilação , Pressão , Ligação Proteica , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Sinalização YAP
3.
Nature ; 550(7675): 260-264, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-28976966

RESUMO

Mammalian organs vary widely in regenerative capacity. Poorly regenerative organs, such as the heart are particularly vulnerable to organ failure. Once established, heart failure commonly results in mortality. The Hippo pathway, a kinase cascade that prevents adult cardiomyocyte proliferation and regeneration, is upregulated in human heart failure. Here we show that deletion of the Hippo pathway component Salvador (Salv) in mouse hearts with established ischaemic heart failure after myocardial infarction induces a reparative genetic program with increased scar border vascularity, reduced fibrosis, and recovery of pumping function compared with controls. Using translating ribosomal affinity purification, we isolate cardiomyocyte-specific translating messenger RNA. Hippo-deficient cardiomyocytes have increased expression of proliferative genes and stress response genes, such as the mitochondrial quality control gene, Park2. Genetic studies indicate that Park2 is essential for heart repair, suggesting a requirement for mitochondrial quality control in regenerating myocardium. Gene therapy with a virus encoding Salv short hairpin RNA improves heart function when delivered at the time of infarct or after ischaemic heart failure following myocardial infarction was established. Our findings indicate that the failing heart has a previously unrecognized reparative capacity involving more than cardiomyocyte renewal.


Assuntos
Proteínas de Ciclo Celular/deficiência , Insuficiência Cardíaca Sistólica/metabolismo , Insuficiência Cardíaca Sistólica/terapia , Infarto do Miocárdio/complicações , Proteínas Serina-Treonina Quinases/deficiência , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Terapia Genética , Insuficiência Cardíaca Sistólica/etiologia , Insuficiência Cardíaca Sistólica/patologia , Via de Sinalização Hippo , Humanos , Camundongos , Camundongos Knockout , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Controle de Qualidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases/genética
4.
Nature ; 534(7605): 119-23, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251288

RESUMO

Myocardial infarction results in compromised myocardial function and heart failure owing to insufficient cardiomyocyte self-renewal. Unlike many vertebrates, mammalian hearts have only a transient neonatal renewal capacity. Reactivating primitive reparative ability in the mature mammalian heart requires knowledge of the mechanisms that promote early heart repair. By testing an established Hippo-deficient heart regeneration mouse model for factors that promote renewal, here we show that the expression of Pitx2 is induced in injured, Hippo-deficient ventricles. Pitx2-deficient neonatal mouse hearts failed to repair after apex resection, whereas adult mouse cardiomyocytes with Pitx2 gain-of-function efficiently regenerated after myocardial infarction. Genomic analyses indicated that Pitx2 activated genes encoding electron transport chain components and reactive oxygen species scavengers. A subset of Pitx2 target genes was cooperatively regulated with the Hippo pathway effector Yap. Furthermore, Nrf2, a regulator of the antioxidant response, directly regulated the expression and subcellular localization of Pitx2. Pitx2 mutant myocardium had increased levels of reactive oxygen species, while antioxidant supplementation suppressed the Pitx2 loss-of-function phenotype. These findings reveal a genetic pathway activated by tissue damage that is essential for cardiac repair.


Assuntos
Antioxidantes/metabolismo , Traumatismos Cardíacos/metabolismo , Proteínas de Homeodomínio/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Regeneração/fisiologia , Fatores de Transcrição/metabolismo , Cicatrização/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Recém-Nascidos , Antioxidantes/farmacologia , Proteínas de Ciclo Celular , Modelos Animais de Doenças , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/genética , Feminino , Sequestradores de Radicais Livres/metabolismo , Traumatismos Cardíacos/genética , Traumatismos Cardíacos/patologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Via de Sinalização Hippo , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Espécies Reativas de Oxigênio/metabolismo , Regeneração/efeitos dos fármacos , Regeneração/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Cicatrização/efeitos dos fármacos , Cicatrização/genética , Proteínas de Sinalização YAP , Proteína Homeobox PITX2
5.
Circ Res ; 124(11): 1647-1657, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31120819

RESUMO

After myocardial injury, cardiomyocyte loss cannot be corrected by using currently available clinical treatments. In recent years, considerable effort has been made to develop cell-based cardiac repair therapies aimed at correcting for this loss. An exciting crop of recent studies reveals that inducing endogenous repair and proliferation of cardiomyocytes may be a viable option for regenerating injured myocardium. Here, we review current heart failure treatments, the state of cardiomyocyte renewal in mammals, and the molecular signals that stimulate cardiomyocyte proliferation. These signals include growth factors, intrinsic signaling pathways, microRNAs, and cell cycle regulators. Animal model cardiac regeneration studies reveal that modulation of exogenous and cell-intrinsic signaling pathways can induce reentry of adult cardiomyocytes into the cell cycle. Using direct myocardial injection, epicardial patch delivery, or systemic administration of growth molecules, these studies show that inducing endogenous cardiomyocytes to self-renew is an exciting and promising therapeutic strategy to treat cardiac injury in humans.


Assuntos
Fármacos Cardiovasculares/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Insuficiência Cardíaca/terapia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/transplante , Regeneração/efeitos dos fármacos , Transplante de Células-Tronco , Animais , Fármacos Cardiovasculares/efeitos adversos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Recuperação de Função Fisiológica , Transdução de Sinais , Transplante de Células-Tronco/efeitos adversos , Resultado do Tratamento
6.
Development ; 140(23): 4683-90, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24255096

RESUMO

Heart failure due to cardiomyocyte loss after ischemic heart disease is the leading cause of death in the United States in large part because heart muscle regenerates poorly. The endogenous mechanisms preventing mammalian cardiomyocyte regeneration are poorly understood. Hippo signaling, an ancient organ size control pathway, is a kinase cascade that inhibits developing cardiomyocyte proliferation but it has not been studied postnatally or in fully mature adult cardiomyocytes. Here, we investigated Hippo signaling in adult cardiomyocyte renewal and regeneration. We found that unstressed Hippo-deficient adult mouse cardiomyocytes re-enter the cell cycle and undergo cytokinesis. Moreover, Hippo deficiency enhances cardiomyocyte regeneration with functional recovery after adult myocardial infarction as well as after postnatal day eight (P8) cardiac apex resection and P8 myocardial infarction. In damaged hearts, Hippo mutant cardiomyocytes also have elevated proliferation. Our findings reveal that Hippo signaling is an endogenous repressor of adult cardiomyocyte renewal and regeneration. Targeting the Hippo pathway in human disease might be beneficial for the treatment of heart disease.


Assuntos
Coração/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Regeneração/fisiologia , Animais , Ciclo Celular , Linhagem Celular , Proliferação de Células , Via de Sinalização Hippo , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio , Miócitos Cardíacos/citologia , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais
7.
Cell Mol Life Sci ; 69(8): 1377-89, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22130515

RESUMO

A key step in heart development is the coordinated development of the atrioventricular canal (AVC), the constriction between the atria and ventricles that electrically and physically separates the chambers, and the development of the atrioventricular valves that ensure unidirectional blood flow. Using knock-out and inducible overexpression mouse models, we provide evidence that the developmentally important T-box factors Tbx2 and Tbx3, in a functionally redundant manner, maintain the AVC myocardium phenotype during the process of chamber differentiation. Expression profiling and ChIP-sequencing analysis of Tbx3 revealed that it directly interacts with and represses chamber myocardial genes, and induces the atrioventricular pacemaker-like phenotype by activating relevant genes. Moreover, mutant mice lacking 3 or 4 functional alleles of Tbx2 and Tbx3 failed to form atrioventricular cushions, precursors of the valves and septa. Tbx2 and Tbx3 trigger development of the cushions through a regulatory feed-forward loop with Bmp2, thus providing a mechanism for the co-localization and coordination of these important processes in heart development.


Assuntos
Coxins Endocárdicos/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Domínio T/metabolismo , Animais , Sequência de Bases , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Coxins Endocárdicos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Miocárdio/metabolismo , Ratos , Proteínas com Domínio T/genética , Regulação para Cima
8.
Sci Transl Med ; 13(600)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193613

RESUMO

Human heart failure, a leading cause of death worldwide, is a prominent example of a chronic disease that may result from poor cell renewal. The Hippo signaling pathway is an inhibitory kinase cascade that represses adult heart muscle cell (cardiomyocyte) proliferation and renewal after myocardial infarction in genetically modified mice. Here, we investigated an adeno-associated virus 9 (AAV9)-based gene therapy to locally knock down the Hippo pathway gene Salvador (Sav) in border zone cardiomyocytes in a pig model of ischemia/reperfusion-induced myocardial infarction. Two weeks after myocardial infarction, when pigs had left ventricular systolic dysfunction, we administered AAV9-Sav-short hairpin RNA (shRNA) or a control AAV9 viral vector carrying green fluorescent protein (GFP) directly into border zone cardiomyocytes via catheter-mediated subendocardial injection. Three months after injection, pig hearts treated with a high dose of AAV9-Sav-shRNA exhibited a 14.3% improvement in ejection fraction (a measure of left ventricular systolic function), evidence of cardiomyocyte division, and reduced scar sizes compared to pigs receiving AAV9-GFP. AAV9-Sav-shRNA-treated pig hearts also displayed increased capillary density and reduced cardiomyocyte ploidy. AAV9-Sav-shRNA gene therapy was well tolerated and did not induce mortality. In addition, liver and lung pathology revealed no tumor formation. Local delivery of AAV9-Sav-shRNA gene therapy to border zone cardiomyocytes in pig hearts after myocardial infarction resulted in tissue renewal and improved function and may have utility in treating heart failure.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Animais , Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética , Camundongos , Infarto do Miocárdio/terapia , Transdução de Sinais , Suínos
9.
Artigo em Inglês | MEDLINE | ID: mdl-31615785

RESUMO

Within the realm of zoological study, the question of how an organism reaches a specific size has been largely unexplored. Recently, studies performed to understand the regulation of organ size have revealed that both cellular signals and external cues contribute toward the determination of total cell mass within each organ. The establishment of final organ size requires the precise coordination of cell growth, proliferation, and survival throughout development and postnatal life. In the mammalian heart, the regulation of size is biphasic. During development, cardiomyocyte proliferation predominantly determines cardiac growth, whereas in the adult heart, total cell mass is governed by signals that regulate cardiac hypertrophy. Here, we review the current state of knowledge regarding the extrinsic factors and intrinsic mechanisms that control heart size during development. We also discuss the metabolic switch that occurs in the heart after birth and precedes homeostatic control of postnatal heart size.


Assuntos
Cardiomegalia/metabolismo , Coração/crescimento & desenvolvimento , Coração/fisiologia , Hipertrofia/patologia , Zoologia/métodos , Animais , Ciclo Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Tamanho do Órgão , Organogênese , Transdução de Sinais , Somatomedinas/metabolismo
10.
Dev Cell ; 48(6): 765-779.e7, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30773489

RESUMO

Specialized adult somatic cells, such as cardiomyocytes (CMs), are highly differentiated with poor renewal capacity, an integral reason underlying organ failure in disease and aging. Among the least renewable cells in the human body, CMs renew approximately 1% annually. Consistent with poor CM turnover, heart failure is the leading cause of death. Here, we show that an active version of the Hippo pathway effector YAP, termed YAP5SA, partially reprograms adult mouse CMs to a more fetal and proliferative state. One week after induction, 19% of CMs that enter S-phase do so twice, CM number increases by 40%, and YAP5SA lineage CMs couple to pre-existing CMs. Genomic studies showed that YAP5SA increases chromatin accessibility and expression of fetal genes, partially reprogramming long-lived somatic cells in vivo to a primitive, fetal-like, and proliferative state.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Envelhecimento/fisiologia , Cromatina/metabolismo , Coração/crescimento & desenvolvimento , Organogênese , Fosfoproteínas/metabolismo , Potenciais de Ação , Animais , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Ciclo Celular , Proteínas de Ciclo Celular , Linhagem da Célula , Proliferação de Células , Diploide , Elementos Facilitadores Genéticos/genética , Mutação com Ganho de Função/genética , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos do Coração/anatomia & histologia , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Organogênese/genética , Regiões Promotoras Genéticas/genética , Fator de Transcrição AP-1/metabolismo , Transgenes , Proteínas de Sinalização YAP
12.
Nat Rev Cardiol ; 15(11): 672-684, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30111784

RESUMO

The Hippo-YAP (Yes-associated protein) pathway is an evolutionarily and functionally conserved regulator of organ size and growth with crucial roles in cell proliferation, apoptosis, and differentiation. This pathway has great potential for therapeutic manipulation in different disease states and to promote organ regeneration. In this Review, we summarize findings from the past decade revealing the function and regulation of the Hippo-YAP pathway in cardiac development, growth, homeostasis, disease, and regeneration. In particular, we highlight the roles of the Hippo-YAP pathway in endogenous heart muscle renewal, including the pivotal role of the Hippo-YAP pathway in regulating cardiomyocyte proliferation and differentiation, stress response, and mechanical signalling. The human heart lacks the capacity to self-repair; therefore, the loss of cardiomyocytes after injury such as myocardial infarction can result in heart failure and death. Despite substantial advances in the treatment of heart failure, an enormous unmet clinical need exists for alternative treatment options. Targeting the Hippo-YAP pathway has tremendous potential for developing therapeutic strategies for cardiac repair and regeneration for currently intractable cardiovascular diseases such as heart failure. The lessons learned from cardiac repair and regeneration studies will also bring new insights into the regeneration of other tissues with limited regenerative capacity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cardiopatias/metabolismo , Miócitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Regeneração , Transdução de Sinais , Animais , Diferenciação Celular , Proliferação de Células , Coração Fetal/crescimento & desenvolvimento , Coração Fetal/metabolismo , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Via de Sinalização Hippo , Humanos , Miócitos Cardíacos/patologia , Organogênese , Fatores de Transcrição , Proteínas de Sinalização YAP
13.
Sci Signal ; 8(375): ra41, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25943351

RESUMO

The mammalian heart regenerates poorly, and damage commonly leads to heart failure. Hippo signaling is an evolutionarily conserved kinase cascade that regulates organ size during development and prevents adult mammalian cardiomyocyte regeneration by inhibiting the transcriptional coactivator Yap, which also responds to mechanical signaling in cultured cells to promote cell proliferation. To identify Yap target genes that are activated during cardiomyocyte renewal and regeneration, we performed Yap chromatin immunoprecipitation sequencing (ChIP-Seq) and mRNA expression profiling in Hippo signaling-deficient mouse hearts. We found that Yap directly regulated genes encoding cell cycle progression proteins, as well as genes encoding proteins that promote F-actin polymerization and that link the actin cytoskeleton to the extracellular matrix. Included in the latter group were components of the dystrophin glycoprotein complex, a large molecular complex that, when defective, results in muscular dystrophy in humans. Cardiomyocytes near the scar tissue of injured Hippo signaling-deficient mouse hearts showed cellular protrusions suggestive of cytoskeletal remodeling. The hearts of mdx mutant mice, which lack functional dystrophin and are a model for muscular dystrophy, showed impaired regeneration and cytoskeleton remodeling, but normal cardiomyocyte proliferation, after injury. Our data showed that, in addition to genes encoding cell cycle progression proteins, Yap regulated genes that enhance cytoskeletal remodeling. Thus, blocking the Hippo pathway input to Yap may tip the balance so that Yap responds to mechanical changes associated with heart injury to promote repair.


Assuntos
Actinas/metabolismo , Proliferação de Células/fisiologia , Citoesqueleto/metabolismo , Coração/fisiologia , Miócitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Regeneração/fisiologia , Actinas/genética , Animais , Citoesqueleto/genética , Via de Sinalização Hippo , Humanos , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/fisiologia
14.
Cancer Res ; 74(15): 4170-82, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24906622

RESUMO

Cancer stem cells (CSC) are purported to initiate and maintain tumor growth. Deregulation of normal stem cell signaling may lead to the generation of CSCs; however, the molecular determinants of this process remain poorly understood. Here we show that the transcriptional coactivator YAP1 is a major determinant of CSC properties in nontransformed cells and in esophageal cancer cells by direct upregulation of SOX9. YAP1 regulates the transcription of SOX9 through a conserved TEAD binding site in the SOX9 promoter. Expression of exogenous YAP1 in vitro or inhibition of its upstream negative regulators in vivo results in elevated SOX9 expression accompanied by the acquisition of CSC properties. Conversely, shRNA-mediated knockdown of YAP1 or SOX9 in transformed cells attenuates CSC phenotypes in vitro and tumorigenicity in vivo. The small-molecule inhibitor of YAP1, verteporfin, significantly blocks CSC properties in cells with high YAP1 and a high proportion of ALDH1(+). Our findings identify YAP1-driven SOX9 expression as a critical event in the acquisition of CSC properties, suggesting that YAP1 inhibition may offer an effective means of therapeutically targeting the CSC population.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fosfoproteínas/metabolismo , Fatores de Transcrição SOX9/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose/fisiologia , Modelos Animais de Doenças , Neoplasias Esofágicas/genética , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , Fatores de Transcrição SOX9/biossíntese , Fatores de Transcrição SOX9/genética , Fatores de Transcrição , Ativação Transcricional , Transfecção , Regulação para Cima , Proteínas de Sinalização YAP
16.
Science ; 332(6028): 458-61, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21512031

RESUMO

Genetic regulation of mammalian heart size is poorly understood. Hippo signaling represents an organ-size control pathway in Drosophila, where it also inhibits cell proliferation and promotes apoptosis in imaginal discs. To determine whether Hippo signaling controls mammalian heart size, we inactivated Hippo pathway components in the developing mouse heart. Hippo-deficient embryos had overgrown hearts with elevated cardiomyocyte proliferation. Gene expression profiling and chromatin immunoprecipitation revealed that Hippo signaling negatively regulates a subset of Wnt target genes. Genetic interaction studies indicated that ß-catenin heterozygosity suppressed the Hippo cardiomyocyte overgrowth phenotype. Furthermore, the Hippo effector Yap interacts with ß-catenin on Sox2 and Snai2 genes. These data uncover a nuclear interaction between Hippo and Wnt signaling that restricts cardiomyocyte proliferation and controls heart size.


Assuntos
Coração/anatomia & histologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Cardiomegalia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Camundongos , Camundongos Transgênicos , Miocárdio/citologia , Tamanho do Órgão , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Serina-Treonina Quinase 3 , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP , beta Catenina/genética , beta Catenina/metabolismo
17.
Dev Cell ; 15(4): 603-16, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18854144

RESUMO

The Aurora B kinase is the enzymatic core of the chromosomal passenger complex, which is a critical regulator of mitosis. To identify novel regulators of Aurora B, we performed a genome-wide screen for suppressors of a temperature-sensitive lethal allele of the C. elegans Aurora B kinase AIR-2. This screen uncovered a member of the Afg2/Spaf subfamily of Cdc48-like AAA ATPases as an essential inhibitor of AIR-2 stability and activity. Depletion of CDC-48.3 restores viability to air-2 mutant embryos and leads to abnormally high AIR-2 levels at the late telophase/G1 transition. Furthermore, CDC-48.3 binds directly to AIR-2 and inhibits its kinase activity from metaphase through telophase. While canonical p97/Cdc48 proteins have been assigned contradictory roles in the regulation of Aurora B, our results identify a member of the Afg2/Spaf AAA ATPases as a critical in vivo inhibitor of this kinase during embryonic development.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Caenorhabditis elegans/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Adenosina Trifosfatases/genética , Alelos , Substituição de Aminoácidos , Animais , Aurora Quinase B , Aurora Quinases , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Glutationa Transferase/metabolismo , Lisina/metabolismo , Mitose , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Interferência de RNA , Proteínas Recombinantes/metabolismo , Temperatura , Proteína com Valosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA