RESUMO
H1 linker histones are the most abundant chromatin-binding proteins1. In vitro studies indicate that their association with chromatin determines nucleosome spacing and enables arrays of nucleosomes to fold into more compact chromatin structures. However, the in vivo roles of H1 are poorly understood2. Here we show that the local density of H1 controls the balance of repressive and active chromatin domains by promoting genomic compaction. We generated a conditional triple-H1-knockout mouse strain and depleted H1 in haematopoietic cells. H1 depletion in T cells leads to de-repression of T cell activation genes, a process that mimics normal T cell activation. Comparison of chromatin structure in normal and H1-depleted CD8+ T cells reveals that H1-mediated chromatin compaction occurs primarily in regions of the genome containing higher than average levels of H1: the chromosome conformation capture (Hi-C) B compartment and regions of the Hi-C A compartment marked by PRC2. Reduction of H1 stoichiometry leads to decreased H3K27 methylation, increased H3K36 methylation, B-to-A-compartment shifting and an increase in interaction frequency between compartments. In vitro, H1 promotes PRC2-mediated H3K27 methylation and inhibits NSD2-mediated H3K36 methylation. Mechanistically, H1 mediates these opposite effects by promoting physical compaction of the chromatin substrate. Our results establish H1 as a critical regulator of gene silencing through localized control of chromatin compaction, 3D genome organization and the epigenetic landscape.
Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/genética , Epigênese Genética , Histonas/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/genética , Cromatina/química , Cromatina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Inativação Gênica , Histonas/química , Ativação Linfocitária/genética , Masculino , Metilação , Camundongos , Camundongos KnockoutRESUMO
Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker histones in silencing repetitive elements in mouse embryonic stem cells. Strong H1 depletion causes a profound de-repression of several classes of repetitive sequences, including major satellite, LINE-1, and ERV. Activation of repetitive sequence transcription is accompanied by decreased H3K9 trimethylation of repetitive sequence chromatin. H1 linker histones interact directly with Suv39h1, Suv39h2, and SETDB1, the histone methyltransferases responsible for H3K9 trimethylation of chromatin within these regions, and stimulate their activity toward chromatin in vitro. However, we also implicate chromatin compaction mediated by H1 as an additional, dominant repressive mechanism for silencing of repetitive major satellite sequences. Our findings elucidate two distinct, H1-mediated pathways for silencing heterochromatin.
Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Sequências Repetitivas de Ácido Nucleico/fisiologia , Animais , Epigenômica , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Metilação , Metiltransferases/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Repressoras/metabolismoRESUMO
Pu.1 is an ETS family transcription factor (TF) that plays critical roles in erythroid progenitors by promoting proliferation and blocking terminal differentiation. However, the mechanisms controlling expression and down-regulation of Pu.1 during early erythropoiesis have not been defined. In this study, we identify the actions of Runx1 and Pu.1 itself at the Pu.1 gene Upstream Regulatory Element (URE) as major regulators of Pu.1 expression in Burst-Forming Unit erythrocytes (BFUe). During early erythropoiesis, Runx1 and Pu.1 levels decline, and chromatin accessibility at the URE is lost. Ectopic expression of Runx1 or Pu.1, both of which bind the URE, prevents Pu.1 down-regulation and blocks terminal erythroid differentiation, resulting in extensive ex vivo proliferation and immortalization of erythroid progenitors. Ectopic expression of Runx1 in BFUe lacking a URE fails to block terminal erythroid differentiation. Thus, Runx1, acting at the URE, and Pu.1 itself directly regulate Pu.1 levels in erythroid cells, and loss of both factors is critical for Pu.1 down-regulation during terminal differentiation. The molecular mechanism of URE inactivation in erythroid cells through loss of TF binding represents a distinct pattern of Pu.1 regulation from those described in other hematopoietic cell types such as T cells which down-regulate Pu.1 through active repression. The importance of down-regulation of Runx1 and Pu.1 in erythropoiesis is further supported by genome-wide analyses showing that their DNA-binding motifs are highly overrepresented in regions that lose chromatin accessibility during early erythroid development.