Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FEMS Yeast Res ; 21(8)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34958354

RESUMO

Invasive candidiasis, the most frequent healthcare-associated invasive fungal infection, is commonly caused by Candida albicans. However, in recent years other antifungal-resistant Candida species-namely Candida glabrata and Candidaauris-have emerged as a serious matter of concern. Much of our understanding of the mechanisms regulating antifungal resistance and tolerance relies on studies utilizing C. albicans, C. glabrataand the model yeast Saccharomyces cerevisiae. 'Omics studies have been used to describe alterations in metabolic, genomic and transcriptomic expression profiles upon antifungal treatment of fungal cells. The physiological changes identified by these approaches could significantly affect fungal fitness in the host and survival during antifungal challenge, as well as provide further understanding of clinical resistance. Thus, this review aims to comparatively address 'omics data for C. albicans, C. glabrata andS. cerevisiae published from 2000 to 2021 to identify what these technologies can tell us regarding cellular responses to antifungal therapy. We will also highlight possible effects on pathogen survival and identify future avenues for antifungal research.


Assuntos
Antifúngicos , Candidíase , Antifúngicos/farmacologia , Candida albicans/genética , Candida glabrata/genética , Farmacorresistência Fúngica , Humanos , Testes de Sensibilidade Microbiana
2.
Curr Top Microbiol Immunol ; 425: 297-330, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31781866

RESUMO

The fungal cell wall is an essential organelle that maintains cellular morphology and protects the fungus from environmental insults. For fungal pathogens such as Candida albicans, it provides a degree of protection against attack by host immune defences. However, the cell wall also presents key epitopes that trigger host immunity and attractive targets for antifungal drugs. Rather than being a rigid shield, it has become clear that the fungal cell wall is an elastic organelle that permits rapid changes in cell volume and the transit of large liposomal particles such as extracellular vesicles. The fungal cell wall is also flexible in that it adapts to local environmental inputs, thereby enhancing the fitness of the fungus in these microenvironments. Recent evidence indicates that this cell wall adaptation affects host-fungus interactions by altering the exposure of major cell wall epitopes that are recognised by innate immune cells. Therefore, we discuss the impact of environmental adaptation upon fungal cell wall structure, and how this affects immune recognition, focussing on C. albicans and drawing parallels with other fungal pathogens.


Assuntos
Candida albicans/citologia , Candida albicans/imunologia , Parede Celular/imunologia , Candida albicans/patogenicidade , Candidíase/imunologia , Candidíase/microbiologia , Humanos
3.
Med Mycol ; 58(6): 744-755, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31912151

RESUMO

Candida auris is an emerging pathogenic yeast of significant clinical concern because of its frequent intrinsic resistance to fluconazole and often other antifungal drugs and the high mortality rates associated with systemic infections. Furthermore, C. auris has a propensity for persistence and transmission in health care environments. The reasons for this efficient transmission are not well understood, and therefore we tested whether enhanced resistance to environmental stresses might contribute to the ability of C. auris to spread in health care environments. We compared C. auris to other pathogenic Candida species with respect to their resistance to individual stresses and combinations of stresses. Stress resistance was examined using in vitro assays on laboratory media and also on hospital linen. In general, the 17 C. auris isolates examined displayed similar degrees of resistance to oxidative, nitrosative, cationic and cell wall stresses as clinical isolates of C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, C. krusei, C. guilliermondii, C. lusitaniae and C. kefyr. All of the C. auris isolates examined were more sensitive to low pH (pH 2, but not pH 4) compared to C. albicans, but were more resistant to high pH (pH 13). C. auris was also sensitive to low pH, when tested on contaminated hospital linen. Most C. auris isolates were relatively thermotolerant, displaying significant growth at 47°C. Furthermore, C. auris was relatively resistant to certain combinations of combinatorial stress (e.g., pH 13 plus 47°C). Significantly, C. auris was sensitive to the stress combinations imposed by hospital laundering protocol (pH > 12 plus heat shock at >80°C), suggesting that current laundering procedures are sufficient to limit the transmission of this fungal pathogen via hospital linen.


Assuntos
Candida/patogenicidade , Candidíase/transmissão , Meio Ambiente , Hospitais , Estresse Fisiológico , Antifúngicos/farmacologia , Roupas de Cama, Mesa e Banho/microbiologia , Candida/classificação , Candida/efeitos dos fármacos , Candidíase/microbiologia , Farmacorresistência Fúngica , Equipamentos e Provisões Hospitalares/microbiologia , Humanos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Estresse Nitrosativo , Estresse Oxidativo , Termotolerância
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA