Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(21): 4546-4566.e27, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37769657

RESUMO

Neutrophils are abundant immune cells in the circulation and frequently infiltrate tumors in substantial numbers. However, their precise functions in different cancer types remain incompletely understood, including in the brain microenvironment. We therefore investigated neutrophils in tumor tissue of glioma and brain metastasis patients, with matched peripheral blood, and herein describe the first in-depth analysis of neutrophil phenotypes and functions in these tissues. Orthogonal profiling strategies in humans and mice revealed that brain tumor-associated neutrophils (TANs) differ significantly from blood neutrophils and have a prolonged lifespan and immune-suppressive and pro-angiogenic capacity. TANs exhibit a distinct inflammatory signature, driven by a combination of soluble inflammatory mediators including tumor necrosis factor alpha (TNF-ɑ) and Ceruloplasmin, which is more pronounced in TANs from brain metastasis versus glioma. Myeloid cells, including tumor-associated macrophages, emerge at the core of this network of pro-inflammatory mediators, supporting the concept of a critical myeloid niche regulating overall immune suppression in human brain tumors.

2.
Cell ; 181(7): 1643-1660.e17, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32470396

RESUMO

Brain malignancies encompass a range of primary and metastatic cancers, including low-grade and high-grade gliomas and brain metastases (BrMs) originating from diverse extracranial tumors. Our understanding of the brain tumor microenvironment (TME) remains limited, and it is unknown whether it is sculpted differentially by primary versus metastatic disease. We therefore comprehensively analyzed the brain TME landscape via flow cytometry, RNA sequencing, protein arrays, culture assays, and spatial tissue characterization. This revealed disease-specific enrichment of immune cells with pronounced differences in proportional abundance of tissue-resident microglia, infiltrating monocyte-derived macrophages, neutrophils, and T cells. These integrated analyses also uncovered multifaceted immune cell activation within brain malignancies entailing converging transcriptional trajectories while maintaining disease- and cell-type-specific programs. Given the interest in developing TME-targeted therapies for brain malignancies, this comprehensive resource of the immune landscape offers insights into possible strategies to overcome tumor-supporting TME properties and instead harness the TME to fight cancer.


Assuntos
Neoplasias Encefálicas/imunologia , Glioma/patologia , Microambiente Tumoral/imunologia , Encéfalo/imunologia , Encéfalo/metabolismo , Neoplasias Encefálicas/patologia , Feminino , Glioma/metabolismo , Humanos , Linfócitos do Interstício Tumoral/imunologia , Macrófagos/imunologia , Masculino , Microglia/metabolismo , Neutrófilos/metabolismo , Linfócitos T/metabolismo
3.
Drug Resist Updat ; 43: 29-37, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31054489

RESUMO

Targeted therapy against driver mutations responsible for cancer progression has been shown to be effective in many tumor types. For glioblastoma (GBM), the epidermal growth factor receptor (EGFR) gene is the most frequently mutated oncogenic driver and has therefore been considered an attractive target for therapy. However, so far responses to EGFR-pathway inhibitors have been disappointing. We performed an exhaustive analysis of the mechanisms that might account for therapy resistance against EGFR inhibition. We define two major mechanisms of resistance and propose modalities to overcome them. The first resistance mechanism concerns target independence. In this case, cells have lost expression of the EGFR protein and experience no negative impact of EGFR targeting. Loss of extrachromosomally encoded EGFR as present in double minute DNA is a frequent mechanism for this type of drug resistance. The second mechanism concerns target compensation. In this case, cells will counteract EGFR inhibition by activation of compensatory pathways that render them independent of EGFR signaling. Compensatory pathway candidates are platelet-derived growth factor ß (PDGFß), Insulin-like growth factor 1 (IGFR1) and cMET and their downstream targets, all not commonly mutated at the time of diagnosis alongside EGFR mutation. Given that both mechanisms make cells independent of EGFR expression, other means have to be found to eradicate drug resistant cells. To this end we suggest rational strategies which include the use of multi-target therapies that hit truncation mutations (mechanism 1) or multi-target therapies to co-inhibit compensatory proteins (mechanism 2).


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Terapia de Alvo Molecular/métodos , Mutação , Oncogenes/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Resultado do Tratamento
4.
Semin Cancer Biol ; 51: 50-58, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29170066

RESUMO

Gliomas are the most common malignant primary brain tumors, of which glioblastoma is the most malignant form (WHO grade IV), and notorious for treatment resistance. Over the last decade mutations in epigenetic regulator genes have been identified as key drivers of subtypes of gliomas with distinct clinical features. Most characteristic are mutations in IDH1 or IDH2 in lower grade gliomas, and histone 3 mutations in pediatric high grade gliomas that are also associated with characteristic DNA methylation patterns. Furthermore, in adult glioblastoma patients epigenetic silencing of the DNA repair gene MGMT by promoter methylation is predictive for benefit from alkylating agent therapy. These epigenetic alterations are used as biomarkers and play a central role for classification of gliomas (WHO 2016) and treatment decisions. Here we review the pivotal role of epigenetic alterations in the etiology and biology of gliomas. We summarize the complex interactions between "driver" mutations, DNA methylation, histone post-translational modifications, and overall chromatin organization, and how they inform current efforts of testing epigenetic compounds and combinations in preclinical and clinical studies.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glioma/classificação , Glioma/terapia , Animais , Glioma/genética , Humanos
5.
Int J Cancer ; 143(1): 127-138, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29417580

RESUMO

Glioblastoma are notorious for their highly invasive growth, diffusely infiltrating adjacent brain structures that precludes complete resection, and is a major obstacle for cure. To characterize this "invisible" tumor part, we designed a high resolution multimodal imaging approach assessing in vivo the metabolism of invasively growing glioma xenografts in the mouse brain. Animals were subjected longitudinally to magnetic resonance imaging (MRI) and 1 H spectroscopy (MRS) at ultra high field (14.1 Tesla) that allowed the measurement of 16 metabolic biomarkers to characterize the metabolic profiles. As expected, the neuronal functionality was progressively compromised as indicated by decreasing N-acetyl aspartate, glutamate and gamma-aminobutyric acid and reduced neuronal TCA cycle (-58%) and neurotransmission (-50%). The dynamic metabolic changes observed, captured differences in invasive growth that was modulated by re-expression of the tumor suppressor gene WNT inhibitory factor 1 (WIF1) in the orthotopic xenografts that attenuates invasion. At late stage mice were subjected to 13 C MRS with infusion of [1,6-13 C]glucose and 18 FDG positron emission tomography (PET) to quantify cell-specific metabolic fluxes involved in glucose metabolism. Most interestingly, this provided the first in vivo evidence for significant glucose oxidation in glioma cells. This suggests that the infiltrative front of glioma does not undergo the glycolytic switch per se, but that environmental triggers may induce metabolic reprograming of tumor cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/metabolismo , Fluordesoxiglucose F18/metabolismo , Glioma/diagnóstico por imagem , Glucose/metabolismo , Proteínas Repressoras/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioma/genética , Glioma/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Masculino , Camundongos , Transplante de Neoplasias , Oxirredução , Tomografia por Emissão de Pósitrons/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Proteínas Repressoras/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Acta Neuropathol ; 135(4): 601-615, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29368212

RESUMO

The optimal treatment for patients with low-grade glioma (LGG) WHO grade II remains controversial. Overall survival ranges from 2 to over 15 years depending on molecular and clinical factors. Hence, risk-adjusted treatments are required for optimizing outcome and quality of life. We aim at identifying mechanisms and associated molecular markers predictive for benefit from radiotherapy (RT) or temozolomide (TMZ) in LGG patients treated in the randomized phase III trial EORTC 22033. As candidate biomarkers for these genotoxic treatments, we considered the DNA methylome of 410 DNA damage response (DDR) genes. We first identified 62 functionally relevant CpG sites located in the promoters of 24 DDR genes, using the LGG data from The Cancer Genome Atlas. Then we tested their association with outcome [progression-free survival (PFS)] depending on treatment in 120 LGG patients of EORTC 22033, whose tumors were mutant for isocitrate dehydrogenase 1 or 2 (IDHmt), the molecular hallmark of LGG. The results suggested that seven CpGs of four DDR genes may be predictive for longer PFS in one of the treatment arms that comprised MGMT, MLH3, RAD21, and SMC4. Most interestingly, the two CpGs identified for MGMT are the same, previously selected for the MGMT-STP27 score that is used to determine the methylation status of the MGMT gene. This score was higher in the LGG with 1p/19q codeletion, in this and other independent LGG datasets. It was predictive for PFS in the TMZ, but not in the RT arm of EORTC 22033. The results support the hypothesis that a high score predicts benefit from TMZ treatment for patients with IDHmt LGG, regardless of the 1p/19q status. This MGMT methylation score may identify patients who benefit from first-line treatment with TMZ, to defer RT for long-term preservation of cognitive function and quality of life.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Metilação de DNA , Receptores com Domínio Discoidina/genética , Glioma/genética , Glioma/terapia , Adulto , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/patologia , Ilhas de CpG , DNA , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/efeitos da radiação , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Epigênese Genética , Feminino , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Masculino , Gradação de Tumores , Intervalo Livre de Progressão , Regiões Promotoras Genéticas , Temozolomida/uso terapêutico , Resultado do Tratamento , Proteínas Supressoras de Tumor/genética
7.
JAMA ; 318(23): 2306-2316, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29260225

RESUMO

Importance: Tumor-treating fields (TTFields) is an antimitotic treatment modality that interferes with glioblastoma cell division and organelle assembly by delivering low-intensity alternating electric fields to the tumor. Objective: To investigate whether TTFields improves progression-free and overall survival of patients with glioblastoma, a fatal disease that commonly recurs at the initial tumor site or in the central nervous system. Design, Setting, and Participants: In this randomized, open-label trial, 695 patients with glioblastoma whose tumor was resected or biopsied and had completed concomitant radiochemotherapy (median time from diagnosis to randomization, 3.8 months) were enrolled at 83 centers (July 2009-2014) and followed up through December 2016. A preliminary report from this trial was published in 2015; this report describes the final analysis. Interventions: Patients were randomized 2:1 to TTFields plus maintenance temozolomide chemotherapy (n = 466) or temozolomide alone (n = 229). The TTFields, consisting of low-intensity, 200 kHz frequency, alternating electric fields, was delivered (≥ 18 hours/d) via 4 transducer arrays on the shaved scalp and connected to a portable device. Temozolomide was administered to both groups (150-200 mg/m2) for 5 days per 28-day cycle (6-12 cycles). Main Outcomes and Measures: Progression-free survival (tested at α = .046). The secondary end point was overall survival (tested hierarchically at α = .048). Analyses were performed for the intent-to-treat population. Adverse events were compared by group. Results: Of the 695 randomized patients (median age, 56 years; IQR, 48-63; 473 men [68%]), 637 (92%) completed the trial. Median progression-free survival from randomization was 6.7 months in the TTFields-temozolomide group and 4.0 months in the temozolomide-alone group (HR, 0.63; 95% CI, 0.52-0.76; P < .001). Median overall survival was 20.9 months in the TTFields-temozolomide group vs 16.0 months in the temozolomide-alone group (HR, 0.63; 95% CI, 0.53-0.76; P < .001). Systemic adverse event frequency was 48% in the TTFields-temozolomide group and 44% in the temozolomide-alone group. Mild to moderate skin toxicity underneath the transducer arrays occurred in 52% of patients who received TTFields-temozolomide vs no patients who received temozolomide alone. Conclusions and Relevance: In the final analysis of this randomized clinical trial of patients with glioblastoma who had received standard radiochemotherapy, the addition of TTFields to maintenance temozolomide chemotherapy vs maintenance temozolomide alone, resulted in statistically significant improvement in progression-free survival and overall survival. These results are consistent with the previous interim analysis. Trial Registration: clinicaltrials.gov Identifier: NCT00916409.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Dacarbazina/análogos & derivados , Terapia por Estimulação Elétrica , Glioblastoma/tratamento farmacológico , Adulto , Idoso , Antineoplásicos Alquilantes/efeitos adversos , Quimiorradioterapia , Dacarbazina/efeitos adversos , Dacarbazina/uso terapêutico , Intervalo Livre de Doença , Feminino , Seguimentos , Glioblastoma/radioterapia , Glioblastoma/cirurgia , Humanos , Quimioterapia de Manutenção , Masculino , Pessoa de Meia-Idade , Mitose , Análise de Sobrevida , Temozolomida
8.
Lancet Oncol ; 17(11): 1521-1532, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27686946

RESUMO

BACKGROUND: Outcome of low-grade glioma (WHO grade II) is highly variable, reflecting molecular heterogeneity of the disease. We compared two different, single-modality treatment strategies of standard radiotherapy versus primary temozolomide chemotherapy in patients with low-grade glioma, and assessed progression-free survival outcomes and identified predictive molecular factors. METHODS: For this randomised, open-label, phase 3 intergroup study (EORTC 22033-26033), undertaken in 78 clinical centres in 19 countries, we included patients aged 18 years or older who had a low-grade (WHO grade II) glioma (astrocytoma, oligoastrocytoma, or oligodendroglioma) with at least one high-risk feature (aged >40 years, progressive disease, tumour size >5 cm, tumour crossing the midline, or neurological symptoms), and without known HIV infection, chronic hepatitis B or C virus infection, or any condition that could interfere with oral drug administration. Eligible patients were randomly assigned (1:1) to receive either conformal radiotherapy (up to 50·4 Gy; 28 doses of 1·8 Gy once daily, 5 days per week for up to 6·5 weeks) or dose-dense oral temozolomide (75 mg/m2 once daily for 21 days, repeated every 28 days [one cycle], for a maximum of 12 cycles). Random treatment allocation was done online by a minimisation technique with prospective stratification by institution, 1p deletion (absent vs present vs undetermined), contrast enhancement (yes vs no), age (<40 vs ≥40 years), and WHO performance status (0 vs ≥1). Patients, treating physicians, and researchers were aware of the assigned intervention. A planned analysis was done after 216 progression events occurred. Our primary clinical endpoint was progression-free survival, analysed by intention-to-treat; secondary outcomes were overall survival, adverse events, neurocognitive function (will be reported separately), health-related quality of life and neurological function (reported separately), and correlative analyses of progression-free survival by molecular markers (1p/19q co-deletion, MGMT promoter methylation status, and IDH1/IDH2 mutations). This trial is closed to accrual but continuing for follow-up, and is registered at the European Trials Registry, EudraCT 2004-002714-11, and at ClinicalTrials.gov, NCT00182819. FINDINGS: Between Sept 23, 2005, and March 26, 2010, 707 patients were registered for the study. Between Dec 6, 2005, and Dec 21, 2012, we randomly assigned 477 patients to receive either radiotherapy (n=240) or temozolomide chemotherapy (n=237). At a median follow-up of 48 months (IQR 31-56), median progression-free survival was 39 months (95% CI 35-44) in the temozolomide group and 46 months (40-56) in the radiotherapy group (unadjusted hazard ratio [HR] 1·16, 95% CI 0·9-1·5, p=0·22). Median overall survival has not been reached. Exploratory analyses in 318 molecularly-defined patients confirmed the significantly different prognosis for progression-free survival in the three recently defined molecular low-grade glioma subgroups (IDHmt, with or without 1p/19q co-deletion [IDHmt/codel], or IDH wild type [IDHwt]; p=0·013). Patients with IDHmt/non-codel tumours treated with radiotherapy had a longer progression-free survival than those treated with temozolomide (HR 1·86 [95% CI 1·21-2·87], log-rank p=0·0043), whereas there were no significant treatment-dependent differences in progression-free survival for patients with IDHmt/codel and IDHwt tumours. Grade 3-4 haematological adverse events occurred in 32 (14%) of 236 patients treated with temozolomide and in one (<1%) of 228 patients treated with radiotherapy, and grade 3-4 infections occurred in eight (3%) of 236 patients treated with temozolomide and in two (1%) of 228 patients treated with radiotherapy. Moderate to severe fatigue was recorded in eight (3%) patients in the radiotherapy group (grade 2) and 16 (7%) in the temozolomide group. 119 (25%) of all 477 patients had died at database lock. Four patients died due to treatment-related causes: two in the temozolomide group and two in the radiotherapy group. INTERPRETATION: Overall, there was no significant difference in progression-free survival in patients with low-grade glioma when treated with either radiotherapy alone or temozolomide chemotherapy alone. Further data maturation is needed for overall survival analyses and evaluation of the full predictive effects of different molecular subtypes for future individualised treatment choices. FUNDING: Merck Sharpe & Dohme-Merck & Co, Canadian Cancer Society, Swiss Cancer League, UK National Institutes of Health, Australian National Health and Medical Research Council, US National Cancer Institute, European Organisation for Research and Treatment of Cancer Cancer Research Fund.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/terapia , Dacarbazina/análogos & derivados , Glioma/terapia , Radioterapia Conformacional , Adulto , Neoplasias Encefálicas/mortalidade , Dacarbazina/uso terapêutico , Glioma/mortalidade , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Temozolomida
9.
Curr Opin Neurol ; 29(6): 782-788, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27676279

RESUMO

PURPOSE OF REVIEW: The management of patients suffering from low-grade gliomas (LGGs) remains a challenge in absence of a definite curative therapy. The median survival is highly variable, from 2 years (high-risk disease) to over 15 years (low risk). The aim of this review is to provide a practical step-by-step evaluation of the available treatment options for patients with LGGs. RECENT FINDINGS: Next to clinical prognostic markers, both the isocitrate dehydrogenase (IDH) mutation status and the status of 1p/19q codeletion are key prognostic factors for the optimal management of patients with LGG. Two recent randomized phase III clinical trials were performed in LGGs. They first compared the efficacy of radiation versus temozolomide (TMZ) chemotherapy in high-risk LGGs. The second trial compared radiation versus radiation combined with procarbazine, lomustine and vincristine chemotherapy. SUMMARY: Regarding molecular prognostic factors, IDH wild-type LGGs have the worst prognosis, independent of therapy, whereas patients with mutated IDH, codeleted 1p/19q LGGs fared best regarding progression-free survival (PFS). In high-risk LGGs, PFS is similar regardless of whether patients have been treated with radiation or TMZ. In the second trial, patients who were treated with combination radiation and chemotherapy showed significant longer overall survival.


Assuntos
Neoplasias Encefálicas/terapia , Glioma/terapia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Terapia Combinada , Dacarbazina/análogos & derivados , Dacarbazina/uso terapêutico , Intervalo Livre de Doença , Glioma/diagnóstico , Glioma/tratamento farmacológico , Glioma/genética , Humanos , Mutação , Prognóstico , Temozolomida , Resultado do Tratamento
11.
JAMA ; 314(23): 2535-43, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26670971

RESUMO

IMPORTANCE: Glioblastoma is the most devastating primary malignancy of the central nervous system in adults. Most patients die within 1 to 2 years of diagnosis. Tumor-treating fields (TTFields) are a locoregionally delivered antimitotic treatment that interferes with cell division and organelle assembly. OBJECTIVE: To evaluate the efficacy and safety of TTFields used in combination with temozolomide maintenance treatment after chemoradiation therapy for patients with glioblastoma. DESIGN, SETTING, AND PARTICIPANTS: After completion of chemoradiotherapy, patients with glioblastoma were randomized (2:1) to receive maintenance treatment with either TTFields plus temozolomide (n = 466) or temozolomide alone (n = 229) (median time from diagnosis to randomization, 3.8 months in both groups). The study enrolled 695 of the planned 700 patients between July 2009 and November 2014 at 83 centers in the United States, Canada, Europe, Israel, and South Korea. The trial was terminated based on the results of this planned interim analysis. INTERVENTIONS: Treatment with TTFields was delivered continuously (>18 hours/day) via 4 transducer arrays placed on the shaved scalp and connected to a portable medical device. Temozolomide (150-200 mg/m2/d) was given for 5 days of each 28-day cycle. MAIN OUTCOMES AND MEASURES: The primary end point was progression-free survival in the intent-to-treat population (significance threshold of .01) with overall survival in the per-protocol population (n = 280) as a powered secondary end point (significance threshold of .006). This prespecified interim analysis was to be conducted on the first 315 patients after at least 18 months of follow-up. RESULTS: The interim analysis included 210 patients randomized to TTFields plus temozolomide and 105 randomized to temozolomide alone, and was conducted at a median follow-up of 38 months (range, 18-60 months). Median progression-free survival in the intent-to-treat population was 7.1 months (95% CI, 5.9-8.2 months) in the TTFields plus temozolomide group and 4.0 months (95% CI, 3.3-5.2 months) in the temozolomide alone group (hazard ratio [HR], 0.62 [98.7% CI, 0.43-0.89]; P = .001). Median overall survival in the per-protocol population was 20.5 months (95% CI, 16.7-25.0 months) in the TTFields plus temozolomide group (n = 196) and 15.6 months (95% CI, 13.3-19.1 months) in the temozolomide alone group (n = 84) (HR, 0.64 [99.4% CI, 0.42-0.98]; P = .004). CONCLUSIONS AND RELEVANCE: In this interim analysis of 315 patients with glioblastoma who had completed standard chemoradiation therapy, adding TTFields to maintenance temozolomide chemotherapy significantly prolonged progression-free and overall survival. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00916409.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/terapia , Dacarbazina/análogos & derivados , Terapia por Estimulação Elétrica/métodos , Glioblastoma/terapia , Quimioterapia de Manutenção/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/mortalidade , Canadá , Carmustina/uso terapêutico , Quimiorradioterapia , Terapia Combinada/efeitos adversos , Terapia Combinada/métodos , Dacarbazina/uso terapêutico , Progressão da Doença , Intervalo Livre de Doença , Término Precoce de Ensaios Clínicos , Terapia por Estimulação Elétrica/efeitos adversos , Europa (Continente) , Feminino , Glioblastoma/mortalidade , Humanos , Israel , Masculino , Pessoa de Meia-Idade , República da Coreia , Temozolomida , Estados Unidos , Adulto Jovem
12.
Lancet Oncol ; 15(10): 1100-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25163906

RESUMO

BACKGROUND: Cilengitide is a selective αvß3 and αvß5 integrin inhibitor. Data from phase 2 trials suggest that it has antitumour activity as a single agent in recurrent glioblastoma and in combination with standard temozolomide chemoradiotherapy in newly diagnosed glioblastoma (particularly in tumours with methylated MGMT promoter). We aimed to assess cilengitide combined with temozolomide chemoradiotherapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter. METHODS: In this multicentre, open-label, phase 3 study, we investigated the efficacy of cilengitide in patients from 146 study sites in 25 countries. Eligible patients (newly diagnosed, histologically proven supratentorial glioblastoma, methylated MGMT promoter, and age ≥18 years) were stratified for prognostic Radiation Therapy Oncology Group recursive partitioning analysis class and geographic region and centrally randomised in a 1:1 ratio with interactive voice response system to receive temozolomide chemoradiotherapy with cilengitide 2000 mg intravenously twice weekly (cilengitide group) or temozolomide chemoradiotherapy alone (control group). Patients and investigators were unmasked to treatment allocation. Maintenance temozolomide was given for up to six cycles, and cilengitide was given for up to 18 months or until disease progression or unacceptable toxic effects. The primary endpoint was overall survival. We analysed survival outcomes by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00689221. FINDINGS: Overall, 3471 patients were screened. Of these patients, 3060 had tumour MGMT status tested; 926 patients had a methylated MGMT promoter, and 545 were randomly assigned to the cilengitide (n=272) or control groups (n=273) between Oct 31, 2008, and May 12, 2011. Median overall survival was 26·3 months (95% CI 23·8-28·8) in the cilengitide group and 26·3 months (23·9-34·7) in the control group (hazard ratio 1·02, 95% CI 0·81-1·29, p=0·86). None of the predefined clinical subgroups showed a benefit from cilengitide. We noted no overall additional toxic effects with cilengitide treatment. The most commonly reported adverse events of grade 3 or worse in the safety population were lymphopenia (31 [12%] in the cilengitide group vs 26 [10%] in the control group), thrombocytopenia (28 [11%] vs 46 [18%]), neutropenia (19 [7%] vs 24 [9%]), leucopenia (18 [7%] vs 20 [8%]), and convulsion (14 [5%] vs 15 [6%]). INTERPRETATION: The addition of cilengitide to temozolomide chemoradiotherapy did not improve outcomes; cilengitide will not be further developed as an anticancer drug. Nevertheless, integrins remain a potential treatment target for glioblastoma. FUNDING: Merck KGaA, Darmstadt, Germany.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Dacarbazina/análogos & derivados , Glioblastoma/tratamento farmacológico , Venenos de Serpentes/uso terapêutico , Proteínas Supressoras de Tumor/genética , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Intervalos de Confiança , Dacarbazina/uso terapêutico , Intervalo Livre de Doença , Relação Dose-Resposta a Droga , Esquema de Medicação , Detecção Precoce de Câncer/métodos , Feminino , Seguimentos , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Estadiamento de Neoplasias , Seleção de Pacientes , Regiões Promotoras Genéticas , Modelos de Riscos Proporcionais , Valores de Referência , Análise de Sobrevida , Temozolomida , Resultado do Tratamento
13.
Lancet Oncol ; 14(9): e370-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23896276

RESUMO

Primary brain tumours are heterogeneous in histology, genetics, and outcome. Although WHO's classification of tumours of the CNS has greatly helped to standardise diagnostic criteria worldwide, it does not consider the substantial progress that has been made in the molecular classification of many brain tumours. Recent practice-changing clinical trials have defined a role for routine assessment of MGMT promoter methylation in glioblastomas in elderly people, and 1p and 19q codeletions in anaplastic oligodendroglial tumours. Moreover, large-scale molecular profiling approaches have identified new mutations in gliomas, affecting IDH1, IDH2, H3F3, ATRX, and CIC, which has allowed subclassification of gliomas into distinct molecular subgroups with characteristic features of age, localisation, and outcome. However, these molecular approaches cannot yet predict patients' benefit from therapeutic interventions. Similarly, transcriptome-based classification of medulloblastoma has delineated four variants that might now be candidate diseases in which to explore novel targeted agents.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Glioma/diagnóstico , Glioma/terapia , Mutação/genética , Neoplasias Encefálicas/classificação , Glioma/classificação , Humanos
14.
Neuro Oncol ; 26(10): 1867-1875, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-38912869

RESUMO

BACKGROUND: The treatment of elderly/ frail patients with glioblastoma is a balance between avoiding undue toxicity, while not withholding effective treatment. It remains debated, whether these patients should receive combined chemo-radiotherapy with temozolomide (RT/TMZ→TMZ) regardless of the O6-methylguanine DNA methyltransferase gene promoter (MGMTp) methylation status. MGMT is a well-known resistance factor blunting the treatment effect of TMZ, by repairing the most genotoxic lesion. Epigenetic silencing of the MGMTp sensitizes glioblastoma to TMZ. For risk-adapted treatment, it is of utmost importance to accurately identify patients, who will not benefit from TMZ treatment. METHODS: Here, we present a reanalysis of the clinical trials CE.6 and the pooled NOA-08 and Nordic trials in elderly glioblastoma patients that compared RT to RT/TMZ→TMZ, or RT to TMZ, respectively. For 687 patients with available MGMTp methylation data, we applied a cutoff discerning truly unmethylated glioblastoma, established in a pooled analysis of 4 clinical trials for glioblastoma, with RT/TMZ→TMZ treatment, using the same quantitative methylation-specific MGMTp PCR assay. RESULTS: When applying this restricted cutoff to the elderly patient population, we confirmed that glioblastoma with truly unmethylated MGMTp derived no benefit from TMZ treatment. In the Nordic/NOA-08 trials, RT was better than TMZ, suggesting little or no benefit from TMZ. CONCLUSIONS: For evidence-based treatment of glioblastoma patients validated MGMTp methylation assays should be used that accurately identify truly unmethylated patients. Respective stratified management of patients will reduce toxicity without compromising outcomes and allow testing of more promising treatment options.


Assuntos
Antineoplásicos Alquilantes , Neoplasias Encefálicas , Metilação de DNA , Metilases de Modificação do DNA , Enzimas Reparadoras do DNA , Glioblastoma , Regiões Promotoras Genéticas , Temozolomida , Proteínas Supressoras de Tumor , Humanos , Glioblastoma/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Enzimas Reparadoras do DNA/genética , Metilases de Modificação do DNA/genética , Idoso , Proteínas Supressoras de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Temozolomida/uso terapêutico , Antineoplásicos Alquilantes/uso terapêutico , Masculino , Feminino , Idoso de 80 Anos ou mais , Quimiorradioterapia/métodos
15.
Cancer Cell ; 42(3): 378-395.e10, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38242126

RESUMO

Brain metastasis (BrM) is a common malignancy, predominantly originating from lung, melanoma, and breast cancers. The vasculature is a key component of the BrM tumor microenvironment with critical roles in regulating metastatic seeding and progression. However, the heterogeneity of the major BrM vascular components, namely endothelial and mural cells, is still poorly understood. We perform single-cell and bulk RNA-sequencing of sorted vascular cell types and detect multiple subtypes enriched specifically in BrM compared to non-tumor brain, including previously unrecognized immune regulatory subtypes. We integrate the human data with mouse models, creating a platform to interrogate vascular targets for the treatment of BrM. We find that the CD276 immune checkpoint molecule is significantly upregulated in the BrM vasculature, and anti-CD276 blocking antibodies prolonged survival in preclinical trials. This study provides important insights into the complex interactions between the vasculature, immune cells, and cancer cells, with translational relevance for designing therapeutic interventions.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Melanoma , Camundongos , Animais , Humanos , Feminino , Neoplasias Encefálicas/patologia , Encéfalo/metabolismo , Neoplasias da Mama/patologia , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Antígenos B7
16.
Cancer Cell ; 42(9): 1507-1527.e11, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39255775

RESUMO

Glioblastoma recurrence is currently inevitable despite extensive standard-of-care treatment. In preclinical studies, an alternative strategy of targeting tumor-associated macrophages and microglia through CSF-1R inhibition was previously found to regress established tumors and significantly increase overall survival. However, recurrences developed in ∼50% of mice in long-term studies, which were consistently associated with fibrotic scars. This fibrotic response is observed following multiple anti-glioma therapies in different preclinical models herein and in patient recurrence samples. Multi-omics analyses of the post-treatment tumor microenvironment identified fibrotic areas as pro-tumor survival niches that encapsulated surviving glioma cells, promoted dormancy, and inhibited immune surveillance. The fibrotic treatment response was mediated by perivascular-derived fibroblast-like cells via activation by transforming growth factor ß (TGF-ß) signaling and neuroinflammation. Concordantly, combinatorial inhibition of these pathways inhibited treatment-associated fibrosis, and significantly improved survival in preclinical trials of anti-colony-stimulating factor-1 receptor (CSF-1R) therapy.


Assuntos
Neoplasias Encefálicas , Fibrose , Glioblastoma , Recidiva Local de Neoplasia , Microambiente Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Animais , Humanos , Camundongos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Microambiente Tumoral/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Fator de Crescimento Transformador beta/metabolismo
17.
Nat Methods ; 7(3): 224-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20173750

RESUMO

Tumor-initiating cells with stem cell properties are believed to sustain the growth of gliomas, but proposed markers such as CD133 cannot be used to identify these cells with sufficient specificity. We report an alternative isolation method purely based on phenotypic qualities of glioma-initiating cells (GICs), avoiding the use of molecular markers. We exploited intrinsic autofluorescence properties and a distinctive morphology to isolate a subpopulation of cells (FL1(+)) from human glioma or glioma cultures. FL1(+) cells are capable of self-renewal in vitro, tumorigenesis in vivo and preferentially express stem cell genes. The FL1(+) phenotype did not correlate with the expression of proposed GIC markers. Our data propose an alternative approach to investigate tumor-initiating potential in gliomas and to advance the development of new therapies and diagnostics.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Encefálicas/patologia , Glioma/patologia , Células-Tronco Neoplásicas/patologia , Antígeno AC133 , Animais , Antígenos CD/análise , Diferenciação Celular , Células Cultivadas , Fluorescência , Perfilação da Expressão Gênica , Glicoproteínas/análise , Humanos , Camundongos , Peptídeos/análise
18.
Lancet Oncol ; 13(9): 916-26, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22877848

RESUMO

BACKGROUND: Most patients with glioblastoma are older than 60 years, but treatment guidelines are based on trials in patients aged only up to 70 years. We did a randomised trial to assess the optimum palliative treatment in patients aged 60 years and older with glioblastoma. METHODS: Patients with newly diagnosed glioblastoma were recruited from Austria, Denmark, France, Norway, Sweden, Switzerland, and Turkey. They were assigned by a computer-generated randomisation schedule, stratified by centre, to receive temozolomide (200 mg/m(2) on days 1-5 of every 28 days for up to six cycles), hypofractionated radiotherapy (34·0 Gy administered in 3·4 Gy fractions over 2 weeks), or standard radiotherapy (60·0 Gy administered in 2·0 Gy fractions over 6 weeks). Patients and study staff were aware of treatment assignment. The primary endpoint was overall survival. Analyses were done by intention to treat. This trial is registered, number ISRCTN81470623. FINDINGS: 342 patients were enrolled, of whom 291 were randomised across three treatment groups (temozolomide n=93, hypofractionated radiotherapy n=98, standard radiotherapy n=100) and 51 of whom were randomised across only two groups (temozolomide n=26, hypofractionated radiotherapy n=25). In the three-group randomisation, in comparison with standard radiotherapy, median overall survival was significantly longer with temozolomide (8·3 months [95% CI 7·1-9·5; n=93] vs 6·0 months [95% CI 5·1-6·8; n=100], hazard ratio [HR] 0·70; 95% CI 0·52-0·93, p=0·01), but not with hypofractionated radiotherapy (7·5 months [6·5-8·6; n=98], HR 0·85 [0·64-1·12], p=0·24). For all patients who received temozolomide or hypofractionated radiotherapy (n=242) overall survival was similar (8·4 months [7·3-9·4; n=119] vs 7·4 months [6·4-8·4; n=123]; HR 0·82, 95% CI 0·63-1·06; p=0·12). For age older than 70 years, survival was better with temozolomide and with hypofractionated radiotherapy than with standard radiotherapy (HR for temozolomide vs standard radiotherapy 0·35 [0·21-0·56], p<0·0001; HR for hypofractionated vs standard radiotherapy 0·59 [95% CI 0·37-0·93], p=0·02). Patients treated with temozolomide who had tumour MGMT promoter methylation had significantly longer survival than those without MGMT promoter methylation (9·7 months [95% CI 8·0-11·4] vs 6·8 months [5·9-7·7]; HR 0·56 [95% CI 0·34-0·93], p=0·02), but no difference was noted between those with methylated and unmethylated MGMT promoter treated with radiotherapy (HR 0·97 [95% CI 0·69-1·38]; p=0·81). As expected, the most common grade 3-4 adverse events in the temozolomide group were neutropenia (n=12) and thrombocytopenia (n=18). Grade 3-5 infections in all randomisation groups were reported in 18 patients. Two patients had fatal infections (one in the temozolomide group and one in the standard radiotherapy group) and one in the temozolomide group with grade 2 thrombocytopenia died from complications after surgery for a gastrointestinal bleed. INTERPRETATION: Standard radiotherapy was associated with poor outcomes, especially in patients older than 70 years. Both temozolomide and hypofractionated radiotherapy should be considered as standard treatment options in elderly patients with glioblastoma. MGMT promoter methylation status might be a useful predictive marker for benefit from temozolomide. FUNDING: Merck, Lion's Cancer Research Foundation, University of Umeå, and the Swedish Cancer Society.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Dacarbazina/análogos & derivados , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/mortalidade , Quimiorradioterapia Adjuvante , Dacarbazina/uso terapêutico , Intervalo Livre de Doença , Fracionamento da Dose de Radiação , Medicina Baseada em Evidências , Feminino , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Cuidados Paliativos , Prognóstico , Qualidade de Vida , Taxa de Sobrevida , Temozolomida , Resultado do Tratamento
19.
Mol Oncol ; 17(9): 1744-1762, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37491696

RESUMO

Glioblastoma, the most malignant brain tumor in adults, exhibits characteristic patterns of epigenetic alterations that await elucidation. The DNA methylome of glioblastoma revealed recurrent epigenetic silencing of HTATIP2, which encodes a negative regulator of importin ß-mediated cytoplasmic-nuclear protein translocation. Its deregulation may thus alter the functionality of cancer-relevant nuclear proteins, such as the base excision repair (BER) enzyme N-methylpurine DNA glycosylase (MPG), which has been associated with treatment resistance in GBM. We found that induction of HTATIP2 expression in GBM cells leads to a significant shift of predominantly nuclear to cytoplasmic MPG, whereas depletion of endogenous HTATIP2 results in enhanced nuclear MPG localization. Reduced nuclear MPG localization, prompted by HTATIP2 expression or by depletion of MPG, yielded less phosphorylated-H2AX-positive cells upon treatment with an alkylating agent. This suggested reduced MPG-mediated formation of apurinic/apyrimidinic sites, leaving behind unrepaired DNA lesions, reflecting a reduced capacity of BER in response to the alkylating agent. Epigenetic silencing of HTATIP2 may thus increase nuclear localization of MPG, thereby enhancing the capacity of the glioblastoma cells to repair treatment-related lesions and contributing to treatment resistance.


Assuntos
DNA Glicosilases , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Reparo do DNA/genética , DNA Glicosilases/genética , Alquilantes , Proteínas Nucleares/genética , Epigênese Genética , Acetiltransferases/genética , Acetiltransferases/metabolismo , Fatores de Transcrição/metabolismo
20.
Cell Rep Med ; 4(1): 100900, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36652909

RESUMO

Brain metastases (BrMs) are the most common form of brain tumors in adults and frequently originate from lung and breast primary cancers. BrMs are associated with high mortality, emphasizing the need for more effective therapies. Genetic profiling of primary tumors is increasingly used as part of the effort to guide targeted therapies against BrMs, and immune-based strategies for the treatment of metastatic cancer are gaining momentum. However, the tumor immune microenvironment (TIME) of BrM is extremely heterogeneous, and whether specific genetic profiles are associated with distinct immune states remains unknown. Here, we perform an extensive characterization of the immunogenomic landscape of human BrMs by combining whole-exome/whole-genome sequencing, RNA sequencing of immune cell populations, flow cytometry, immunofluorescence staining, and tissue imaging analyses. This revealed unique TIME phenotypes in genetically distinct lung- and breast-BrMs, thereby enabling the development of personalized immunotherapies tailored by the genetic makeup of the tumors.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Melanoma , Neoplasias Cutâneas , Adulto , Humanos , Feminino , Neoplasias Encefálicas/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Imunoterapia , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA