Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Genet ; 14(7): e1007511, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30044771

RESUMO

The NF-κB-like velvet domain protein VosA (viability of spores) binds to more than 1,500 promoter sequences in the filamentous fungus Aspergillus nidulans. VosA inhibits premature induction of the developmental activator gene brlA, which promotes asexual spore formation in response to environmental cues as light. VosA represses a novel genetic network controlled by the sclB gene. SclB function is antagonistic to VosA, because it induces the expression of early activator genes of asexual differentiation as flbC and flbD as well as brlA. The SclB controlled network promotes asexual development and spore viability, but is independent of the fungal light control. SclB interactions with the RcoA transcriptional repressor subunit suggest additional inhibitory functions on transcription. SclB links asexual spore formation to the synthesis of secondary metabolites including emericellamides, austinol as well as dehydroaustinol and activates the oxidative stress response of the fungus. The fungal VosA-SclB regulatory system of transcription includes a VosA control of the sclB promoter, common and opposite VosA and SclB control functions of fungal development and several additional regulatory genes. The relationship between VosA and SclB illustrates the presence of a convoluted surveillance apparatus of transcriptional control, which is required for accurate fungal development and the linkage to the appropriate secondary metabolism.


Assuntos
Aspergillus nidulans/fisiologia , Proteínas Fúngicas/genética , Estresse Oxidativo/genética , Reprodução Assexuada/genética , Metabolismo Secundário/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Redes Reguladoras de Genes/fisiologia , Genes Fúngicos/genética , Regiões Promotoras Genéticas/genética , Domínios Proteicos/fisiologia , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/fisiologia
3.
Angew Chem Int Ed Engl ; 58(52): 18957-18963, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31693786

RESUMO

Natural products (NPs) from microorganisms have been important sources for discovering new therapeutic and chemical entities. While their corresponding biosynthetic gene clusters (BGCs) can be easily identified by gene-sequence-similarity-based bioinformatics strategies, the actual access to these NPs for structure elucidation and bioactivity testing remains difficult. Deletion of the gene encoding the RNA chaperone, Hfq, results in strains losing the production of most NPs. By exchanging the native promoter of a desired BGC against an inducible promoter in Δhfq mutants, almost exclusive production of the corresponding NP from the targeted BGC in Photorhabdus, Xenorhabdus and Pseudomonas was observed including the production of several new NPs derived from previously uncharacterized non-ribosomal peptide synthetases (NRPS). This easyPACId approach (easy Promoter Activated Compound Identification) facilitates NP identification due to low interference from other NPs. Moreover, it allows direct bioactivity testing of supernatants containing secreted NPs, without laborious purification.


Assuntos
Produtos Biológicos/química , Vias Biossintéticas/genética , Metabolômica/métodos , Humanos
4.
Environ Microbiol ; 19(1): 119-129, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27555343

RESUMO

Photorhabdus luminescens maintains a symbiotic relationship with the nematodes Heterorhabditis bacteriophora and together they infect and kill insect larvae. To maintain this symbiotic relationship, the bacteria must produce an array of secondary metabolites to assist in the development and replication of nematodes. The regulatory mechanisms surrounding production of these compounds are mostly unknown. The global post-transcriptional regulator, Hfq, is widespread in bacteria and performs many functions, one of which is the facilitation of sRNA binding to target mRNAs, with recent research thoroughly exploring its various pleiotropic effects. Here we generate and characterize an hfq deletion mutant and show that in the absence of hfq, the bacteria are no longer able to maintain a healthy symbiosis with nematodes due to the abolishment of the production of all known secondary metabolites. RNAseq led us to produce a second deletion of a known repressor, HexA, in the same strain, which restored both metabolite production and symbiosis.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Fator Proteico 1 do Hospedeiro/genética , Photorhabdus/genética , Rhabditoidea/microbiologia , Metabolismo Secundário/genética , Animais , Insetos/microbiologia , Insetos/parasitologia , Photorhabdus/fisiologia , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Simbiose/fisiologia
5.
Chembiochem ; 16(5): 766-71, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25711603

RESUMO

Simple urea compounds ("phurealipids") have been identified from the entomopathogenic bacterium Photorhabdus luminescens, and their biosynthesis was elucidated. Very similar analogues of these compounds have been previously developed as inhibitors of juvenile hormone epoxide hydrolase (JHEH), a key enzyme in insect development and growth. Phurealipids also inhibit JHEH, and therefore phurealipids might contribute to bacterial virulence.


Assuntos
Produtos Biológicos/farmacologia , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Photorhabdus/química , Ureia/farmacologia , Animais , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Epóxido Hidrolases/metabolismo , Insetos , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/metabolismo
6.
Structure ; 31(5): 573-583.e5, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36963398

RESUMO

Modification of the polyketide anthraquinone AQ-256 in the entomopathogenic Photorhabdus luminescens involves several O-methylations, but the biosynthetic gene cluster antA-I lacks corresponding tailoring enzymes. We here describe the identification of five putative, highly homologous O-methyltransferases encoded in the genome of P. luminescens. Activity assays in vitro and deletion experiments in vivo revealed that three of them account for anthraquinone tailoring by producing three monomethylated and two dimethylated species of AQ-256. X-ray structures of all five enzymes indicate high structural and mechanistic similarity. As confirmed by structure-based mutagenesis, a conserved histidine at the active site likely functions as a general base for substrate deprotonation and subsequent methyl transfer in all enzymes. Eight complex structures with AQ-256 as well as mono- and dimethylated derivatives confirm the substrate specificity patterns found in vitro and visualize how single amino acid differences in the active-site pockets impact substrate orientation and govern site-specific methylation.


Assuntos
Metiltransferases , Photorhabdus , Metiltransferases/química , Metilação , Photorhabdus/genética , Domínio Catalítico , Antraquinonas/metabolismo
7.
Front Fungal Biol ; 2: 777474, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37744088

RESUMO

The soil microbiome comprises numerous filamentous fungi and bacteria that mutually react and challenge each other by the production of bioactive secondary metabolites. Herein, we show in liquid co-cultures that the presence of filamentous Streptomycetes producing antifungal glycopeptide antibiotics induces the production of the antibacterial and iron-chelating tropolones anhydrosepedonin (1) and antibiotic C (2) in the mold Aspergillus nidulans. Additionally, the biosynthesis of the related polyketide tripyrnidone (5) was induced, whose novel tricyclic scaffold we elucidated by NMR and HRESIMS data. The corresponding biosynthetic polyketide synthase-encoding gene cluster responsible for the production of these compounds was identified. The tropolones as well as tripyrnidone (5) are produced by genes that belong to the broad reservoir of the fungal genome for the synthesis of different secondary metabolites, which are usually silenced under standard laboratory conditions. These molecules might be part of the bacterium-fungus competition in the complex soil environment, with the bacterial glycopeptide antibiotic as specific environmental trigger for fungal induction of this cluster.

8.
PeerJ ; 5: e3471, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28663937

RESUMO

The Gram-negative bacteria Photorhabdus and Xenorhabdus are known to produce a variety of different natural products (NP). These compounds play different roles since the bacteria live in symbiosis with nematodes and are pathogenic to insect larvae in the soil. Thus, a fine tuned regulatory system controlling NP biosynthesis is indispensable. Global regulators such as Hfq, Lrp, LeuO and HexA have been shown to influence NP production of Photorhabdus and Xenorhabdus. Additionally, photopyrones as quorum sensing (QS) signals were demonstrated to be involved in the regulation of NP production in Photorhabdus. In this study, we investigated the role of another possible QS signal, autoinducer-2 (AI-2), in regulation of NP production. The AI-2 synthase (LuxS) is widely distributed within the bacterial kingdom and has a dual role as a part of the activated methyl cycle pathway, as well as being responsible for AI-2 precursor production. We deleted luxS in three different entomopathogenic bacteria and compared NP levels in the mutant strains to the wild type (WT) but observed no difference to the WT strains. Furthermore, the absence of the small regulatory RNA micA, which is encoded directly upstream of luxS, did not influence NP levels. Phenotypic differences between the P. luminescens luxS deletion mutant and an earlier described luxS deficient strain of P. luminescens suggested that two phenotypically different strains have evolved in different laboratories.

9.
Heliyon ; 2(11): e00197, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27957552

RESUMO

Biological diversity arises among genetically equal subpopulations in the same environment, a phenomenon called phenotypic heterogeneity. The life cycle of the enteric bacterium Photorhabdus luminescens involves a symbiotic interaction with nematodes as well as a pathogenic association with insect larvae. P. luminescens exists in two distinct phenotypic forms designated as primary (1°) and secondary (2°). In contrast to 1° cells, 2° cells are non-pigmented due to the absence of natural compounds, especially anthraquinones (AQs). We identified a novel type of transcriptional regulator, AntJ, which activates expression of the antA-I operon responsible for AQ production. AntJ heterogeneously activates the AQ production in single P. luminescens 1° cells, and blocks AQ production in 2° cells. AntJ contains a proposed ligand-binding WYL-domain, which is widespread among bacteria. AntJ is one of the rare examples of regulators that mediate heterogeneous gene expression by altering activity rather than copy number in single cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA