Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(35): e2302070120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603745

RESUMO

Glucocorticoids (GC) are potent anti-inflammatory agents, broadly used to treat acute and chronic inflammatory diseases, e.g., critically ill COVID-19 patients or patients with chronic inflammatory bowel diseases. GC not only limit inflammation but also promote its resolution although the underlying mechanisms are obscure. Here, we reveal reciprocal regulation of 15-lipoxygenase (LOX) isoform expression in human monocyte/macrophage lineages by GC with respective consequences for the biosynthesis of specialized proresolving mediators (SPM) and their 15-LOX-derived monohydroxylated precursors (mono-15-OH). Dexamethasone robustly up-regulated pre-mRNA, mRNA, and protein levels of ALOX15B/15-LOX-2 in blood monocyte-derived macrophage (MDM) phenotypes, causing elevated SPM and mono-15-OH production in inflammatory cell types. In sharp contrast, dexamethasone blocked ALOX15/15-LOX-1 expression and impaired SPM formation in proresolving M2-MDM. These dexamethasone actions were mimicked by prednisolone and hydrocortisone but not by progesterone, and they were counteracted by the GC receptor (GR) antagonist RU486. Chromatin immunoprecipitation (ChIP) assays revealed robust GR recruitment to a putative enhancer region within intron 3 of the ALOX15B gene but not to the transcription start site. Knockdown of 15-LOX-2 in M1-MDM abolished GC-induced SPM formation and mono-15-OH production. Finally, ALOX15B/15-LOX-2 upregulation was evident in human monocytes from patients with GC-treated COVID-19 or patients with IBD. Our findings may explain the proresolving GC actions and offer opportunities for optimizing GC pharmacotherapy and proresolving mediator production.


Assuntos
COVID-19 , Glucocorticoides , Humanos , Glucocorticoides/farmacologia , Araquidonato 15-Lipoxigenase/genética , Inflamação , Dexametasona/farmacologia , Lipídeos
2.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569823

RESUMO

Sepsis is a life-threatening medical emergency triggered by excessive inflammation in response to an infection. High mortality rates and limited therapeutic options pose significant challenges in sepsis treatment. Histone deacetylase inhibitors (HDACi), such as suberoylanilide hydroxamic acid (SAHA), have been proposed as potent anti-inflammatory agents for treating inflammatory diseases. However, the underlying mechanisms of sepsis treatment remain poorly understood. In this study, we investigated the effects of SAHA treatment in the lipopolysaccharide (LPS)-induced endotoxemia mouse model as it closely mimics the early stages of the systemic inflammation of sepsis. Our results demonstrate a reduced inflammatory mediator secretion and improved survival rates in mice. Using quantitative acetylomics, we found that SAHA administration increases the acetylation of lactate dehydrogenase (LDHA), and consequently inhibits LDHA activity. Notably, the reduced enzyme activity of LDHA results in a reduced rate of glycolysis. Furthermore, our experiments with bone marrow-derived macrophages (BMDMs) show that SAHA administration reduced oxidative stress and extracellular ATP concentrations, ultimately blunting inflammasome activation. Overall, our study provides insights into the mechanism underlying SAHA's therapeutic effects in sepsis treatment and highlights LDHA as a potential target for developing novel sepsis treatment.


Assuntos
Endotoxemia , Sepse , Animais , Camundongos , Vorinostat/farmacologia , Vorinostat/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Endotoxemia/tratamento farmacológico , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Sepse/tratamento farmacológico
3.
Cytokine ; 144: 155552, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34000478

RESUMO

The seven signal transducers of transcription (STATs) are cytokine-inducible modular transcription factors. They transmit the stimulation of cells with type I interferons (IFN-α/IFN-ß) and type II interferon (IFN-É£) into altered gene expression patterns. The N-terminal domain (NTD) of STAT1 is a surface for STAT1/STAT1 homodimer and STAT1/STAT2 heterodimer formation and allows the cooperative DNA binding of STAT1. We investigated whether the STAT1 NTD-mediated dimerization affected the IFN-induced tyrosine phosphorylation of STAT1, its nuclear translocation, STAT1-dependent gene expression, and IFN-dependent antiviral defense. We reconstituted human STAT1-negative and STAT2-negative fibrosarcoma cells with STAT1, NTD-mutated STAT1 (STAT1AA), STAT1 with a mutated DNA-binding domain (DBD), or STAT2. We treated these cells with IFN-α and IFN-É£ to assess differences between IFN-α-induced STAT1 homo- and heterodimers and IFN-É£-induced STAT1 homodimers. Our data demonstrate that IFNs induce the phosphorylation of STAT1 and STAT1AA at Y701 and their nuclear accumulation. We further reveal that STAT1AA can be phosphorylated in response to IFN-α in the absence of STAT2 and that IFN-É£-induced STAT1AA can activate gene expression directly. However, STAT1AA largely fails to bind STAT2 and to activate IFN-α-induced expression of endogenous antiviral STAT1/STAT2 target proteins. Congruent herewith, both an intact STAT1 NTD and STAT2 are indispensable to establish an antiviral state with IFN-α. These data provide new insights into the biological importance of the STAT1 NTD.


Assuntos
Interferon Tipo I/metabolismo , Interferon gama/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/fisiologia , Antivirais/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Fosforilação/fisiologia , Transporte Proteico/fisiologia , Fator de Transcrição STAT2/metabolismo
4.
Invest New Drugs ; 36(3): 396-406, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29150734

RESUMO

The sirtuin 1/2 inhibitor tenovin-1 activates p53 and may have potential in the management of cancer. Here, we investigated the responsiveness of Ewing's sarcoma cells to tenovin-1. We examined its effects in two Ewing's sarcoma cell lines with different p53 status, i.e. in p53 wild-type and p53 null cells. Effects were assessed by flow cytometric analyses of cell death, mitochondrial membrane depolarization and reactive oxygen species (ROS) generation, by caspase 3/7 activity measurement, by mRNA expression profiling and by immunoblotting. Tenovin-1 elicited caspase-mediated cell death in p53 wild-type cells, but caspase-independent cell death in p53 null cells. Remarkably, it induced a nonlinear concentration response in the latter: low concentrations of tenovin-1 were much more effective than were higher concentrations. Tenovin-1's effects in p53 null cells involved gene expression changes of Bcl-2 family members, mitochondrial membrane depolarization, nuclear translocation of apoptosis-inducing factor, ROS formation and DNA damage; all these effects followed a bell-shaped pattern. In conclusion, our results provide new insights into tenovin-1's mode of action by demonstrating that it can induce different pathways of cell death.


Assuntos
Acetanilidas/farmacologia , Fator de Indução de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Sarcoma de Ewing/patologia , Sirtuína 1/antagonistas & inibidores , Sirtuína 2/antagonistas & inibidores , Tioureia/análogos & derivados , Antineoplásicos/farmacologia , Caspases/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sirtuína 1/metabolismo , Sirtuína 2/metabolismo , Tioureia/farmacologia , Proteína Supressora de Tumor p53/metabolismo
5.
Arch Toxicol ; 92(7): 2227-2243, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29845424

RESUMO

Novel therapies are required for the treatment of metastatic renal cell carcinoma (RCC), which is associated with inoperable disease and patient death. Histone deacetylases (HDACs) are epigenetic modifiers and potential drug targets. Additional information on molecular pathways that are altered by histone deacetylase inhibitors (HDACi) in RCC cells is warranted. It should equally be delineated further which individual members of the 18 mammalian HDACs determine the survival and tumor-associated gene expression programs of such cells. Most importantly, an ongoing dispute whether HDACi promote or suppress metastasis-associated epithelial-to-mesenchymal transition (EMT) has to be resolved before HDACi are considered further as clinically relevant drugs. Here we show how HDACi affect murine and primary human RCC cells. We find that these agents induce morphological alterations resembling the metastasis-associated EMT. However, individual and proteomics-based analyses of epithelial and mesenchymal marker proteins and of EMT-associated transcription factors (EMT-TFs) reveal that HDACi do not trigger EMT. Pathway deconvolution analysis identifies reduced proliferation and apoptosis induction as key effects of HDACi. Furthermore, these drugs lead to a reduction of the cell adhesion molecule E-cadherin and of the platelet-derived growth factor receptor-ß (PDGFRß), which is a key driver of RCC metastasis formation. Accordingly, HDACi reduce the pulmonary spread of syngeneic transplanted renal carcinoma cells in mice. Specific genetic elimination of the histone deacetylases HDAC1/HDAC2 reflects the effects of pharmacological HDAC inhibition regarding growth suppression, apoptosis, and the downregulation of E-cadherin and PDGFRß. Thus, these epigenetic modifiers are non-redundant gatekeepers of cell fate and precise pharmacological targets.


Assuntos
Carcinoma de Células Renais/enzimologia , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 2/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Renais/enzimologia , Animais , Apoptose/efeitos dos fármacos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Arch Toxicol ; 92(6): 2119-2135, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29589053

RESUMO

A remaining expression of the transcription factor Wilms tumor 1 (WT1) after cytotoxic chemotherapy indicates remaining leukemic clones in patients. We determined the regulation and relevance of WT1 in leukemic cells exposed to replicative stress and DNA damage. To induce these conditions, we used the clinically relevant chemotherapeutics hydroxyurea and doxorubicin. We additionally treated cells with the pro-apoptotic kinase inhibitor staurosporine. Our data show that these agents promote apoptosis to a variable extent in a panel of 12 leukemic cell lines and that caspases cleave WT1 during apoptosis. A chemical inhibition of caspases as well as an overexpression of mitochondrial, anti-apoptotic BCL2 family proteins significantly reduces the processing of WT1 and cell death in hydroxyurea-sensitive acute promyelocytic leukemia cells. Although the reduction of WT1 correlates with the pharmacological efficiency of chemotherapeutics in various leukemic cells, the elimination of WT1 by different strategies of RNA interference (RNAi) does not lead to changes in the cell cycle of chronic myeloid leukemia K562 cells. RNAi against WT1 does also not increase the extent of apoptosis and the accumulation of γH2AX in K562 cells exposed to hydroxyurea. Likewise, a targeted genetic depletion of WT1 in primary oviduct cells does not increase the levels of γH2AX. Our findings position WT1 as a downstream target of the apoptotic process that occurs in response to cytotoxic forms of replicative stress and DNA damage.


Assuntos
Apoptose/efeitos dos fármacos , Dano ao DNA , Doxorrubicina/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Hidroxiureia/farmacologia , Proteínas WT1/metabolismo , Animais , Apoptose/genética , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Replicação do DNA/efeitos dos fármacos , Tubas Uterinas/efeitos dos fármacos , Feminino , Humanos , Células K562 , Camundongos Knockout , Cultura Primária de Células , Proteínas WT1/genética
7.
Arch Toxicol ; 91(5): 2191-2208, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27807597

RESUMO

The treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid (ATRA) induces granulocytic differentiation. This process renders APL cells resistant to cytotoxic chemotherapies. Epigenetic regulators of the histone deacetylases (HDACs) family, which comprise four classes (I-IV), critically control the development and progression of APL. We set out to clarify the parameters that determine the interaction between ATRA and histone deacetylase inhibitors (HDACi). Our assays included drugs against class I HDACs (MS-275, VPA, and FK228), pan-HDACi (LBH589, SAHA), and the novel HDAC6-selective compound Marbostat-100. We demonstrate that ATRA protects APL cells from cytotoxic effects of SAHA, MS-275, and Marbostat-100. However, LBH589 and FK228, which have a superior substrate-inhibitor dissociation constant (Ki) for the class I deacetylases HDAC1, 2, 3, are resistant against ATRA-dependent cytoprotective effects. We further show that HDACi evoke DNA damage, measured as induction of phosphorylated histone H2AX and by the comet assay. The ability of ATRA to protect APL cells from the induction of p-H2AX by HDACi is a readout for the cytoprotective effects of ATRA. Moreover, ATRA increases the fraction of cells in the G1 phase, together with an accumulation of the cyclin-dependent kinase inhibitor p21 and a reduced expression of thymidylate synthase (TdS). In contrast, the ATRA-dependent activation of the transcription factors STAT1, NF-κB, and C/EBP hardly influences the responses of APL cells to HDACi. We conclude that the affinity of HDACi for class I HDACs determines whether such drugs can kill naïve and maturated APL cells.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Leucemia/tratamento farmacológico , Leucemia/patologia , Tretinoína/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Histona Desacetilases/administração & dosagem , Humanos , Leucemia/metabolismo , NF-kappa B/metabolismo , Piridinas/farmacologia , Fator de Transcrição STAT1/metabolismo , Tretinoína/administração & dosagem
8.
Genes Dev ; 23(2): 223-35, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19171783

RESUMO

Cytokines such as interferons (IFNs) activate signal transducers and activators of transcription (STATs) via phosphorylation. Histone deacetylases (HDACs) and the histone acetyltransferase (HAT) CBP dynamically regulate STAT1 acetylation. Here we show that acetylation of STAT1 counteracts IFN-induced STAT1 phosphorylation, nuclear translocation, DNA binding, and target gene expression. Biochemical and genetic experiments altering the HAT/HDAC activity ratio and STAT1 mutants reveal that a phospho-acetyl switch regulates STAT1 signaling via CBP, HDAC3, and the T-cell protein tyrosine phosphatase (TCP45). Strikingly, inhibition of STAT1 signaling via CBP-mediated acetylation is distinct from the functions of this HAT in transcriptional activation. STAT1 acetylation induces binding of TCP45, which catalyzes dephosphorylation and latency of STAT1. Our results provide a deeper understanding of the modulation of STAT1 activity. These findings reveal a new layer of physiologically relevant STAT1 regulation and suggest that a previously unidentified balance between phosphorylation and acetylation affects cytokine signaling.


Assuntos
Regulação da Expressão Gênica , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/fisiologia , Acetilação , Linhagem Celular , Histona Desacetilases/metabolismo , Humanos , Interferon-alfa/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo
9.
Biochim Biophys Acta ; 1846(2): 524-38, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25072962

RESUMO

Histone deacetylase 2 (HDAC2) regulates biological processes by deacetylation of histones and non-histone proteins. HDAC2 is overexpressed in numerous cancer types, suggesting general cancer-relevant functions of HDAC2. In human tumors the TP53 gene encoding p53 is frequently mutated and wild-type p53 is often disarmed. Molecular pathways inactivating wild-type p53 often remain to be defined and understood. Remarkably, current data link HDAC2 to the regulation of the tumor suppressor p53 by deacetylation and to the maintenance of genomic stability. Here, we summarize recent findings on HDAC2 overexpression in solid and hematopoietic cancers with a focus on mechanisms connecting HDAC2 and p53 in vitro and in vivo. In addition, we present an evidence-based model that integrates molecular pathways and feedback loops by which p53 and further transcription factors govern the expression and the ubiquitin-dependent proteasomal degradation of HDAC2 and of p53 itself. Understanding the interactions between p53 and HDAC2 might aid in the development of new therapeutic approaches against cancer.


Assuntos
Carcinogênese , Histona Desacetilase 2/fisiologia , Neoplasias/enzimologia , Proteína Supressora de Tumor p53/fisiologia , Acetilação , Animais , Humanos
10.
Biochim Biophys Acta ; 1845(2): 202-20, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24440709

RESUMO

Survivin belongs to the family of apoptosis inhibitors (IAPs), which antagonizes the induction of cell death. Dysregulated expression of IAPs is frequently observed in cancers, and the high levels of survivin in tumors compared to normal adult tissues make it an attractive target for pharmacological interventions. The small imidazolium-based compound YM155 has recently been reported to block the expression of survivin via inhibition of the survivin promoter. Recent data, however, question that this is the sole and main effect of this drug, which is already being tested in ongoing clinical studies. Here, we critically review the current data on YM155 and other new experimental agents supposed to antagonize survivin. We summarize how cells from various tumor entities and with differential expression of the tumor suppressor p53 respond to this agent in vitro and as murine xenografts. Additionally, we recapitulate clinical trials conducted with YM155. Our article further considers the potency of YM155 in combination with other anti-cancer agents and epigenetic modulators. We also assess state-of-the-art data on the sometimes very promiscuous molecular mechanisms affected by YM155 in cancer cells.


Assuntos
Imidazóis/administração & dosagem , Proteínas Inibidoras de Apoptose/biossíntese , Naftoquinonas/administração & dosagem , Neoplasias/genética , Animais , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/genética , Camundongos , Neoplasias/patologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Survivina , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Commun Biol ; 7(1): 589, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755249

RESUMO

The hepatic acute-phase response is characterized by a massive upregulation of serum proteins, such as haptoglobin and serum amyloid A, at the expense of liver homeostatic functions. Although the transcription factor hepatocyte nuclear factor 4 alpha (HNF4A) has a well-established role in safeguarding liver function and its cistrome spans around 50% of liver-specific genes, its role in the acute-phase response has received little attention so far. We demonstrate that HNF4A binds to and represses acute-phase genes under basal conditions. The reprogramming of hepatic transcription during inflammation necessitates loss of HNF4A function to allow expression of acute-phase genes while liver homeostatic genes are repressed. In a pre-clinical liver organoid model overexpression of HNF4A maintained liver functionality in spite of inflammation-induced cell damage. Conversely, HNF4A overexpression potently impaired the acute-phase response by retaining chromatin at regulatory regions of acute-phase genes inaccessible to transcription. Taken together, our data extend the understanding of dual HNF4A action as transcriptional activator and repressor, establishing HNF4A as gatekeeper for the hepatic acute-phase response.


Assuntos
Reação de Fase Aguda , Fator 4 Nuclear de Hepatócito , Fígado , Transcriptoma , Fator 4 Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Reação de Fase Aguda/genética , Reação de Fase Aguda/metabolismo , Animais , Fígado/metabolismo , Camundongos , Regulação para Baixo , Humanos , Camundongos Endogâmicos C57BL , Masculino , Regulação da Expressão Gênica
12.
Pharmaceutics ; 16(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38675165

RESUMO

The effective pharmacological treatment of inflamed wounds such as pyoderma gangraenosum remains challenging, as the systemic application of suitable drugs such as glucocorticoids is compromised by severe side effects and the inherent difficulties of wounds as drug targets. Furthermore, conventional semi-solid formulations are not suitable for direct application to open wounds. Thus, the treatment of inflamed wounds could considerably benefit from the development of active wound dressings for the topical administration of anti-inflammatory drugs. Although bacterial cellulose appears to be an ideal candidate for this purpose due to its known suitability for advanced wound care and as a drug delivery system, the incorporation of poorly water-soluble compounds into the hydrophilic material still poses a problem. The use of microemulsions could solve that open issue. The present study therefore explores their use as a novel approach to incorporate poorly water-soluble glucocorticoids into bacterial cellulose. Five microemulsion formulations were loaded with hydrocortisone or dexamethasone and characterized in detail, demonstrating their regular microstructure, biocompatibility and shelf-life stability. Bacterial cellulose was successfully loaded with the formulations as confirmed by transmission electron microscopy and surprisingly showed homogenous incorporation, even of w/o type microemulsions. High and controllable drug permeation through Strat-M® membranes was observed, and the anti-inflammatory activity for permeated glucocorticoids was confirmed in vitro. This study presents a novel approach for the development of anti-inflammatory wound dressings using bacterial cellulose in combination with microemulsions.

13.
iScience ; 27(2): 108943, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38333702

RESUMO

Glucocorticoid (GC) signaling is essential for mounting a stress response, however, chronic stress or prolonged GC therapy downregulates the GC receptor (GR), leading to GC resistance. Regulatory mechanisms that refine this equilibrium are not well understood. Here, we identify seven lysine acetylation sites in the amino terminal domain of GR, with lysine 154 (Lys154) in the AF-1 region being the dominant acetyl-acceptor. GR-Lys154 acetylation is mediated by p300/CBP in the nucleus in an agonist-dependent manner and correlates with transcriptional activity. Deacetylation by NAD+-dependent SIRT1 facilitates dynamic regulation of this mark. Notably, agonist-binding to both wild-type GR and an acetylation-deficient mutant elicits similar short-term target gene expression. In contrast, upon extended treatment, the polyubiquitination of the acetylation-deficient GR mutant is impaired resulting in higher protein stability, increased chromatin association and prolonged transactivation. Taken together, reversible acetylation fine-tunes duration of the GC response by regulating proteasomal degradation of activated GR.

14.
Methods Mol Biol ; 2589: 195-205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255626

RESUMO

The ability of histone deacetylase inhibitors (HDACi) like valproic acid (VPA) as a therapeutic for inflammatory diseases or cancer has increased the interest in HDACi and their targeted transport to diseased tissues. Administration of VPA immobilized on polymeric carriers was found to be a suitable approach to circumvent drawbacks such as rapid metabolization, short serum half-life, or side effects. Polysaccharides are convenient biopolymeric carriers due to their biocompatibility and biodegradability. Furthermore, the hydroxy-, amino-, or carboxylic groups are predestinated for functionalization. The esterification of three hydroxy groups of cellulose with VPA leads to products having a high amount of VPA loading. Subsequent shaping yielded uniform nanoparticles (NPs) of around 150 nm in size capable of releasing VPA in a controlled way under physiological conditions.


Assuntos
Inibidores de Histona Desacetilases , Nanopartículas , Inibidores de Histona Desacetilases/farmacologia , Ácido Valproico/farmacologia , Celulose
15.
Pharmaceutics ; 15(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38140000

RESUMO

RNA interference can be applied to different target genes for treating a variety of diseases, but an appropriate delivery system is necessary to ensure the transport of intact siRNAs to the site of action. In this study, cellulose was dually modified to create a non-viral vector for HDAC3 short interfering RNA (siRNA) transfer into cells. A guanidinium group introduced positive charges into the cellulose to allow complexation of negatively charged genetic material. Furthermore, a biotin group fixed by a polyethylene glycol (PEG) spacer was attached to the polymer to allow, if required, the binding of targeting ligands. The resulting polyplexes with HDAC3 siRNA had a size below 200 nm and a positive zeta potential of up to 15 mV. For N/P ratio 2 and higher, the polymer could efficiently complex siRNA. Nanoparticles, based on this dually modified derivative, revealed a low cytotoxicity. Only minor effects on the endothelial barrier integrity and a transfection efficiency in HEK293 cells higher than Lipofectamine 2000TM were found. The uptake and release of the polyplexes were confirmed by immunofluorescence imaging. This study indicates that the modified biopolymer is an auspicious biocompatible non-viral vector with biotin as a promising moiety.

16.
Methods Mol Biol ; 2589: 129-144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255622

RESUMO

Systemic administration of histone deacetylase inhibitors (HDACi), like valproic acid (VPA), is often associated with rapid drug metabolization and untargeted tissue distribution. This requires high-dose application that can lead to unintended side effects. Hence, drug carrier systems such as nanoparticles (NPs) are developed to circumvent these disadvantages by enhancing serum half-life as well as organ specificity.This chapter gives a summary of the biological characterization of HDACi-coupled NPs in vitro, including investigation of cellular uptake, biocompatibility, as well as intracellular drug release and activity. Suitable methods, opportunities, and challenges will be discussed to provide general guidelines for the analysis of HDACi drug carrier systems with a special focus on recently developed cellulose-based VPA-coupled NPs.


Assuntos
Inibidores de Histona Desacetilases , Nanopartículas , Inibidores de Histona Desacetilases/farmacologia , Ácido Valproico/farmacologia , Portadores de Fármacos , Celulose
17.
Cancer Metab ; 10(1): 10, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787728

RESUMO

BACKGROUND: Metabolic adaptations can allow cancer cells to survive DNA-damaging chemotherapy. This unmet clinical challenge is a potential vulnerability of cancer. Accordingly, there is an intense search for mechanisms that modulate cell metabolism during anti-tumor therapy. We set out to define how colorectal cancer CRC cells alter their metabolism upon DNA replication stress and whether this provides opportunities to eliminate such cells more efficiently. METHODS: We incubated p53-positive and p53-negative permanent CRC cells and short-term cultured primary CRC cells with the topoisomerase-1 inhibitor irinotecan and other drugs that cause DNA replication stress and consequently DNA damage. We analyzed pro-apoptotic mitochondrial membrane depolarization and cell death with flow cytometry. We evaluated cellular metabolism with immunoblotting of electron transport chain (ETC) complex subunits, analysis of mitochondrial mRNA expression by qPCR, MTT assay, measurements of oxygen consumption and reactive oxygen species (ROS), and metabolic flux analysis with the Seahorse platform. Global metabolic alterations were assessed using targeted mass spectrometric analysis of extra- and intracellular metabolites. RESULTS: Chemotherapeutics that cause DNA replication stress induce metabolic changes in p53-positive and p53-negative CRC cells. Irinotecan enhances glycolysis, oxygen consumption, mitochondrial ETC activation, and ROS production in CRC cells. This is connected to increased levels of electron transport chain complexes involving mitochondrial translation. Mass spectrometric analysis reveals global metabolic adaptations of CRC cells to irinotecan, including the glycolysis, tricarboxylic acid cycle, and pentose phosphate pathways. P53-proficient CRC cells, however, have a more active metabolism upon DNA replication stress than their p53-deficient counterparts. This metabolic switch is a vulnerability of p53-positive cells to irinotecan-induced apoptosis under glucose-restricted conditions. CONCLUSION: Drugs that cause DNA replication stress increase the metabolism of CRC cells. Glucose restriction might improve the effectiveness of classical chemotherapy against p53-positive CRC cells. The topoisomerase-1 inhibitor irinotecan and other chemotherapeutics that cause DNA damage induce metabolic adaptations in colorectal cancer (CRC) cells irrespective of their p53 status. Irinotecan enhances the glycolysis and oxygen consumption in CRC cells to deliver energy and biomolecules necessary for DNA repair and their survival. Compared to p53-deficient cells, p53-proficient CRC cells have a more active metabolism and use their intracellular metabolites more extensively. This metabolic switch creates a vulnerability to chemotherapy under glucose-restricted conditions for p53-positive cells.

18.
Int J Pharm ; 601: 120567, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33812975

RESUMO

Inflammatory diseases like sepsis are associated with dysregulated gene expression, often caused by an imbalance of epigenetic regulators, such as histone acetyltransferases (HATs) and histone deacetylases (HDACs), and consequently, altered epigenetic chromatin signatures or aberrant posttranslational modifications of signalling proteins and transcription factors. Thus, HDAC inhibitors (HDACi) are a promising class of anti-inflammatory drugs. Recently, an efficient drug delivery system carrying the class I/IIa selective HDACi valproic acid (VPA) was developed to circumvent common disadvantages of free drug administration, e.g. short half-life and side effects. The cellulose-based sulphated VPA-coupled (CV-S) nanoparticles (NPs) are rapidly taken up by cells, do not cause any toxic effects and are fully biocompatible. Importantly, VPA is intracellularly cleaved from the NPs and HDACi activity could be proven. Here, we demonstrate that CV-S NPs exhibit overall anti-inflammatory effects in primary human macrophages and are able to attenuate the lipopolysaccharide-induced inflammatory response. CV-S NPs show superior potential to free VPA to suppress the TLR-MyD88-NF-κB signalling axis, leading to decreased TNF-α expression and secretion.


Assuntos
Nanopartículas , Ácido Valproico , Inibidores de Histona Desacetilases/farmacologia , Humanos , Inflamação/tratamento farmacológico , Lipopolissacarídeos
19.
RSC Adv ; 11(31): 18748-18756, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34046176

RESUMO

Targeted HRMS2-GNPS-based metabolomic analysis of Pseudoxylaria sp. X187, a fungal antagonist of the fungus-growing termite symbiosis, resulted in the identification of two lipopeptidic congeners of xylacremolides, named xylacremolide C and D, which are built from d-phenylalanine, l-proline and an acetyl-CoA starter unit elongated by four malonyl-CoA derived ketide units. The putative xya gene cluster was identified from a draft genome generated by Illumina and PacBio sequencing and RNAseq studies. Biological activities of xylacremolide A and B were evaluated and revealed weak histone deacetylase inhibitory (HDACi) and antifungal activities, as well as moderate protease inhibition activity across a panel of nine human, viral and bacterial proteases.

20.
J Control Release ; 329: 717-730, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33031880

RESUMO

The development of bio-based nanoparticles (NPs) as drug containers is of increasing interest to circumvent several obstacles in drug therapy such as rapid drug metabolization, short serum half-life, and unspecific side effects. The histone deacetylase inhibitor valproic acid (VPA) is known for its anti-inflammatory as well as for its anti-cancer activity. Here, recently developed VPA-loaded NPs based on cellulose- and dextran VPA esters were modified with sulfuric acid half ester moieties to improve intracellular drug release. The NPs show rapid cellular uptake, are non-toxic in vitro and in vivo, and able to induce histone H3 hyperacetylation. Thus, they represent a potent drug delivery system for the application in a variety of treatment settings, such as inflammation, sepsis and defined cancer types. In addition, the flexible NP-system offers a broad range of further options for modification, e.g. for targeting strategies and multi-drug approaches.


Assuntos
Sulfatos , Ácido Valproico , Inibidores de Histona Desacetilases , Histonas , Polissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA