Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Cell ; 51(6): 829-39, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24035500

RESUMO

A chemicogenetic screen was performed in budding yeast mutants that have a weakened replication stress response. This identified an inhibitor of target of rapamycin (TOR) complexes 1 and 2 that selectively enhances the sensitivity of sgs1Δ cells to hydroxyurea and camptothecin. More importantly, the inhibitor has strong synthetic lethality in combination with either the break-inducing antibiotic Zeocin or ionizing radiation, independent of the strain background. Lethality correlates with a rapid fragmentation of chromosomes that occurs only when TORC2, but not TORC1, is repressed. Genetic inhibition of Tor2 kinase, or its downstream effector kinases Ypk1/Ypk2, conferred similar synergistic effects in the presence of Zeocin. Given that Ypk1/Ypk2 controls the actin cytoskeleton, we tested the effects of actin modulators latrunculin A and jasplakinolide. These phenocopy TORC2 inhibition on Zeocin, although modulation of calcineurin-sensitive transcription does not. These results implicate TORC2-mediated actin filament regulation in the survival of low levels of DNA damage.


Assuntos
Instabilidade Genômica , Complexos Multiproteicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética , Actinas/antagonistas & inibidores , Actinas/metabolismo , Bleomicina/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Cromossomos/efeitos dos fármacos , Cromossomos/genética , Cromossomos/efeitos da radiação , Dano ao DNA/genética , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/efeitos da radiação , Instabilidade Genômica/efeitos dos fármacos , Instabilidade Genômica/efeitos da radiação , Quinase 3 da Glicogênio Sintase/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Radiação Ionizante , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Tiazolidinas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(2): E180-E189, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29269392

RESUMO

PARKIN, an E3 ligase mutated in familial Parkinson's disease, promotes mitophagy by ubiquitinating mitochondrial proteins for efficient engagement of the autophagy machinery. Specifically, PARKIN-synthesized ubiquitin chains represent targets for the PINK1 kinase generating phosphoS65-ubiquitin (pUb), which constitutes the mitophagy signal. Physiological regulation of PARKIN abundance, however, and the impact on pUb accumulation are poorly understood. Using cells designed to discover physiological regulators of PARKIN abundance, we performed a pooled genome-wide CRISPR/Cas9 knockout screen. Testing identified genes individually resulted in a list of 53 positive and negative regulators. A transcriptional repressor network including THAP11 was identified and negatively regulates endogenous PARKIN abundance. RNAseq analysis revealed the PARKIN-encoding locus as a prime THAP11 target, and THAP11 CRISPR knockout in multiple cell types enhanced pUb accumulation. Thus, our work demonstrates the critical role of PARKIN abundance, identifies regulating genes, and reveals a link between transcriptional repression and mitophagy, which is also apparent in human induced pluripotent stem cell-derived neurons, a disease-relevant cell type.


Assuntos
Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Genoma Humano/genética , Mitofagia/genética , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases/genética , Linhagem Celular Tumoral , Células Cultivadas , Células HCT116 , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Recém-Nascido , Neurônios/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
J Biol Chem ; 293(31): 12043-12053, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29895620

RESUMO

Target of rapamycin complex 2 (TORC2) is a widely conserved serine/threonine protein kinase. In the yeast Saccharomyces cerevisiae, TORC2 is essential, playing a key role in plasma membrane homeostasis. In this role, TORC2 regulates diverse processes, including sphingolipid synthesis, glycerol production and efflux, polarization of the actin cytoskeleton, and endocytosis. The major direct substrate of TORC2 is the AGC-family kinase Ypk1. Ypk1 connects TORC2 signaling to actin polarization and to endocytosis via the flippase kinases Fpk1 and Fpk2. Here, we report that Fpk1 mediates TORC2 signaling to control actin polarization, but not endocytosis, via aminophospholipid flippases. To search for specific targets of these flippase kinases, we exploited the fact that Fpk1 prefers to phosphorylate Ser residues within the sequence RXS(L/Y)(D/E), which is present ∼90 times in the yeast proteome. We observed that 25 of these sequences are phosphorylated by Fpk1 in vitro We focused on one sequence hit, the Ark/Prk-family kinase Akl1, as this kinase previously has been implicated in endocytosis. Using a potent ATP-competitive small molecule, CMB4563, to preferentially inhibit TORC2, we found that Fpk1-mediated Akl1 phosphorylation inhibits Akl1 activity, which, in turn, reduces phosphorylation of Pan1 and of other endocytic coat proteins and ultimately contributes to a slowing of endocytosis kinetics. These results indicate that the regulation of actin polarization and endocytosis downstream of TORC2 is signaled through separate pathways that bifurcate at the level of the flippase kinases.


Assuntos
Endocitose/genética , Regulação Fúngica da Expressão Gênica , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Endocitose/efeitos dos fármacos , Glicerol/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas dos Microfilamentos/genética , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Serina/metabolismo , Transdução de Sinais , Esfingolipídeos/biossíntese
4.
Nat Chem Biol ; 13(12): 1239-1244, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28991239

RESUMO

Tim17 and Tim23 are the main subunits of the TIM23 complex, one of the two major essential mitochondrial inner-membrane protein translocon machineries (TIMs). No chemical probes that specifically inhibit TIM23-dependent protein import were known to exist. Here we show that the natural product stendomycin, produced by Streptomyces hygroscopicus, is a potent and specific inhibitor of the TIM23 complex in yeast and mammalian cells. Furthermore, stendomycin-mediated blockage of the TIM23 complex does not alter normal processing of the major regulatory mitophagy kinase PINK1, but TIM23 is required to stabilize PINK1 on the outside of mitochondria to initiate mitophagy upon membrane depolarization.


Assuntos
Proteínas Mitocondriais/metabolismo , Peptídeos/farmacologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Peptídeos Catiônicos Antimicrobianos , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Estrutura Molecular , Peptídeos/química , Transporte Proteico/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
5.
PLoS Genet ; 12(11): e1006374, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27855158

RESUMO

Invasive infections by fungal pathogens cause more deaths than malaria worldwide. We found the ergoline compound NGx04 in an antifungal screen, with selectivity over mammalian cells. High-resolution chemogenomics identified the lipid transfer protein Sec14p as the target of NGx04 and compound-resistant mutations in Sec14p define compound-target interactions in the substrate binding pocket of the protein. Beyond its essential lipid transfer function in a variety of pathogenic fungi, Sec14p is also involved in secretion of virulence determinants essential for the pathogenicity of fungi such as Cryptococcus neoformans, making Sec14p an attractive antifungal target. Consistent with this dual function, we demonstrate that NGx04 inhibits the growth of two clinical isolates of C. neoformans and that NGx04-related compounds have equal and even higher potency against C. neoformans. Furthermore NGx04 analogues showed fungicidal activity against a fluconazole resistant C. neoformans strain. In summary, we present genetic evidence that NGx04 inhibits fungal Sec14p and initial data supporting NGx04 as a novel antifungal starting point.


Assuntos
Proteínas de Transporte/química , Criptococose/tratamento farmacológico , Cryptococcus neoformans/efeitos dos fármacos , Ergolinas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Antifúngicos/farmacologia , Proteínas de Transporte/genética , Criptococose/microbiologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Ergolinas/química , Humanos , Testes de Sensibilidade Microbiana , Conformação Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética
6.
J Biol Chem ; 290(24): 14963-78, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25882841

RESUMO

Target of rapamycin is a Ser/Thr kinase that operates in two conserved multiprotein complexes, TORC1 and TORC2. Unlike TORC1, TORC2 is insensitive to rapamycin, and its functional characterization is less advanced. Previous genetic studies demonstrated that TORC2 depletion leads to loss of actin polarization and loss of endocytosis. To determine how TORC2 regulates these readouts, we engineered a yeast strain in which TORC2 can be specifically and acutely inhibited by the imidazoquinoline NVP-BHS345. Kinetic analyses following inhibition of TORC2, supported with quantitative phosphoproteomics, revealed that TORC2 regulates these readouts via distinct pathways as follows: rapidly through direct protein phosphorylation cascades and slowly through indirect changes in the tensile properties of the plasma membrane. The rapid signaling events are mediated in large part through the phospholipid flippase kinases Fpk1 and Fpk2, whereas the slow signaling pathway involves increased plasma membrane tension resulting from a gradual depletion of sphingolipids. Additional hits in our phosphoproteomic screens highlight the intricate control TORC2 exerts over diverse aspects of eukaryote cell physiology.


Assuntos
Actinas/metabolismo , Endocitose , Complexos Multiproteicos/fisiologia , Saccharomyces cerevisiae/metabolismo , Serina-Treonina Quinases TOR/fisiologia , Proteínas Fúngicas/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Fosforilação , Análise de Componente Principal , Proteínas Quinases/metabolismo , Proteômica , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
7.
Antimicrob Agents Chemother ; 56(8): 4233-40, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22615293

RESUMO

Systemic life-threatening fungal infections represent a significant unmet medical need. Cell-based, phenotypic screening can be an effective means of discovering potential novel antifungal compounds, but it does not address target identification, normally required for compound optimization by medicinal chemistry. Here, we demonstrate a combination of screening, genetic, and biochemical approaches to identify and characterize novel antifungal compounds. We isolated a set of novel non-azole antifungal compounds for which no target or mechanism of action is known, using a screen for inhibition of Saccharomyces cerevisiae proliferation. Haploinsufficiency profiling of these compounds in S. cerevisiae suggests that they target Erg11p, a cytochrome P450 family member, which is the target of azoles. Consistent with this, metabolic profiling in S. cerevisiae revealed a buildup of the metabolic intermediates prior to Erg11p activity, following compound treatment. Further, human cytochrome P450 is also inhibited in in vitro assays by these compounds. We modeled the Erg11p protein based on the human CYP51 crystal structure, and in silico docking of these compounds suggests that they interact with the heme center in a manner similar to that of azoles. Consistent with these docking observations, Candida strains carrying azole-resistant alleles of ERG11 are also resistant to the compounds in this study. Thus, we have identified non-azole Erg11p inhibitors, using a systematic approach for ligand and target characterization.


Assuntos
Antifúngicos/farmacologia , Inibidores das Enzimas do Citocromo P-450 , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/efeitos dos fármacos , Antifúngicos/química , Azóis/farmacologia , Sistema Enzimático do Citocromo P-450 , Farmacorresistência Fúngica/genética , Ensaios de Triagem em Larga Escala , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Sci Rep ; 11(1): 19396, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588551

RESUMO

Fibrosis is characterized by the excessive production of collagen and other extracellular matrix (ECM) components and represents a leading cause of morbidity and mortality worldwide. Previous studies of nonalcoholic steatohepatitis (NASH) with fibrosis were largely restricted to bulk transcriptome profiles. Thus, our understanding of this disease is limited by an incomplete characterization of liver cell types in general and hepatic stellate cells (HSCs) in particular, given that activated HSCs are the major hepatic fibrogenic cell population. To help fill this gap, we profiled 17,810 non-parenchymal cells derived from six healthy human livers. In conjunction with public single-cell data of fibrotic/cirrhotic human livers, these profiles enable the identification of potential intercellular signaling axes (e.g., ITGAV-LAMC1, TNFRSF11B-VWF and NOTCH2-DLL4) and master regulators (e.g., RUNX1 and CREB3L1) responsible for the activation of HSCs during fibrogenesis. Bulk RNA-seq data of NASH patient livers and rodent models for liver fibrosis of diverse etiologies allowed us to evaluate the translatability of candidate therapeutic targets for NASH-related fibrosis. We identified 61 liver fibrosis-associated genes (e.g., AEBP1, PRRX1 and LARP6) that may serve as a repertoire of translatable drug target candidates. Consistent with the above regulon results, gene regulatory network analysis allowed the identification of CREB3L1 as a master regulator of many of the 61 genes. Together, this study highlights potential cell-cell interactions and master regulators that underlie HSC activation and reveals genes that may represent prospective hallmark signatures for liver fibrosis.


Assuntos
Células Estreladas do Fígado , Hepatopatia Gordurosa não Alcoólica , Transcriptoma , Animais , Voluntários Saudáveis , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos , Análise de Célula Única
9.
G3 (Bethesda) ; 9(3): 829-840, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30670608

RESUMO

Gene knockout and knockdown strategies have been immensely successful probes of gene function, but small molecule inhibitors (SMIs) of gene products allow much greater time resolution and are particularly useful when the targets are essential for cell replication or survival. SMIs also serve as lead compounds for drug discovery. However, discovery of selective SMIs is costly and inefficient. The action of SMIs can be modeled simply by tagging gene products with an auxin-inducible degron (AID) that triggers rapid ubiquitylation and proteasomal degradation of the tagged protein upon exposure of live cells to auxin. To determine if this approach is broadly effective, we AID-tagged over 750 essential proteins in Saccharomyces cerevisiae and observed growth inhibition by low concentrations of auxin in over 66% of cases. Polytopic transmembrane proteins in the plasma membrane, Golgi complex, and endoplasmic reticulum were efficiently depleted if the AID-tag was exposed to cytoplasmic OsTIR1 ubiquitin ligase. The auxin analog 1-napthylacetic acid (NAA) was as potent as auxin on AID-tags, but surprisingly NAA was more potent than auxin at inhibiting target of rapamycin complex 1 (TORC1) function. Auxin also synergized with known SMIs when acting on the same essential protein, indicating that AID-tagged strains can be useful for SMI screening. Auxin synergy, resistance mutations, and cellular assays together suggest the essential GMP/GDP-mannose exchanger in the Golgi complex (Vrg4) as the target of a natural cyclic peptide of unknown function (SDZ 90-215). These findings indicate that AID-tagging can efficiently model the action of SMIs before they are discovered and can facilitate SMI discovery.


Assuntos
Ácidos Indolacéticos/farmacologia , Peptídeos Cíclicos/farmacologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Antifúngicos/farmacologia , Genética Microbiana , Proteínas de Membrana Transportadoras , Ácidos Naftalenoacéticos/farmacologia , Saccharomyces cerevisiae/metabolismo
11.
Sci Rep ; 8(1): 1799, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379065

RESUMO

We generated induced pluripotent stem cells (iPSCs) from patient fibroblasts to yield cell lines containing varying degrees of heteroplasmy for a m.13514 A > G mtDNA point mutation (2 lines) and for a ~6 kb single, large scale mtDNA deletion (3 lines). Long term culture of the iPSCs containing a single, large-scale mtDNA deletion showed consistent increase in mtDNA deletion levels with time. Higher levels of mtDNA heteroplasmy correlated with increased respiratory deficiency. To determine what changes occurred in deletion level during differentiation, teratomas comprising all three embryonic germ layers were generated from low (20%) and intermediate heteroplasmy (55%) mtDNA deletion clones. Regardless of whether iPSCs harbouring low or intermediate mtDNA heteroplasmy were used, the final levels of heteroplasmy in all teratoma germ layers increased to a similar high level (>60%). Thus, during human stem cell division, cells not only tolerate high mtDNA deletion loads but seem to preferentially replicate deleted mtDNA genomes. This has implications for the involvement of mtDNA deletions in both disease and ageing.


Assuntos
DNA Mitocondrial/genética , Deleção de Sequência/genética , Diferenciação Celular/genética , Linhagem Celular , Células Clonais/metabolismo , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/genética , Mutação Puntual/genética
12.
Mol Cell Biol ; 22(5): 1329-39, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11839800

RESUMO

The PKC1-associated mitogen-activated protein (MAP) kinase pathway of Saccharomyces cerevisiae regulates cell integrity by controlling the actin cytoskeleton and cell wall synthesis. Activation of PKC1 occurs via the GTPase RHO1 and the kinase pair PKH1 and PKH2. Here we report that YPK1 and YPK2, an essential pair of homologous kinases and proposed downstream effectors of PKH and sphingolipids, are also regulators of the PKC1-controlled MAP kinase cascade. ypk mutants display random distribution of the actin cytoskeleton and severely reduced activation of the MAP kinase MPK1. Upregulation of the RHO1 GTPase switch or the PKC1 effector MAP kinase pathway suppresses the growth and actin defects of ypk cells. ypk lethality is also suppressed by overexpression of an uncharacterized gene termed TUS1. TUS1 is a novel RHO1 exchange factor that contributes to cell wall integrity-mediated modulation of RHO1 activity. Thus, TUS1 and the YPKs add to the growing complexity of RHO1 and PKC1 regulation in the cell integrity signaling pathway. Furthermore, our findings suggest that the YPKs are a missing link between sphingolipid signaling and the cell integrity pathway.


Assuntos
Parede Celular/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Ativação Enzimática , Resposta ao Choque Térmico , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Quinase C/metabolismo , Saccharomyces cerevisiae/citologia
13.
Microbiol Res ; 199: 10-18, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28454705

RESUMO

The budding yeast S. cerevisiae is widely used as a eukaryotic model organism to elucidate the mechanism of action of low molecular weight compounds. This report describes the development of two high throughput screening methods based on cell viability either by monitoring the reduction of alamarBlue® (resazurin) or by direct optical measurement of cell growth. Both methods can be miniaturized to allow screening of large numbers of samples, and can be performed using S. cerevisiae in 384 and 1536-well format. The alamarBlue® approach achieves Z' values of >0.7 with signal to basal ratios of >6.5, and around 1.1 million low molecular weight compounds were screened, identifying approximately 25,000 primary hits. Dose response curves generated for a subset (1930) using both alamarBlue® and optical density methods showed significant overlap. In genome-wide haploinsufficiency profiling (HIP), 572 of these hits demonstrated a diverse mechanism of action, affecting >25% of all yeast strains.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Saccharomyces cerevisiae/química , Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Teóricos , Oxazinas/análise , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomycetales/química , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/crescimento & desenvolvimento , Xantenos/análise
14.
Nat Commun ; 6: 8613, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26456460

RESUMO

FR171456 is a natural product with cholesterol-lowering properties in animal models, but its molecular target is unknown, which hinders further drug development. Here we show that FR171456 specifically targets the sterol-4-alpha-carboxylate-3-dehydrogenase (Saccharomyces cerevisiae--Erg26p, Homo sapiens--NSDHL (NAD(P) dependent steroid dehydrogenase-like)), an essential enzyme in the ergosterol/cholesterol biosynthesis pathway. FR171456 significantly alters the levels of cholesterol pathway intermediates in human and yeast cells. Genome-wide yeast haploinsufficiency profiling experiments highlight the erg26/ERG26 strain, and multiple mutations in ERG26 confer resistance to FR171456 in growth and enzyme assays. Some of these ERG26 mutations likely alter Erg26 binding to FR171456, based on a model of Erg26. Finally, we show that FR171456 inhibits an artificial Hepatitis C viral replicon, and has broad antifungal activity, suggesting potential additional utility as an anti-infective. The discovery of the target and binding site of FR171456 within the target will aid further development of this compound.


Assuntos
3-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , Antifúngicos/química , Colesterol/análogos & derivados , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/genética , 3-Hidroxiesteroide Desidrogenases/genética , Candida albicans , Colesterol/química , Farmacorresistência Fúngica/genética , Ergosterol/biossíntese , Mutação , Proteínas de Saccharomyces cerevisiae/genética
15.
Microbiol Res ; 169(2-3): 107-20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24360837

RESUMO

Due to evolutionary conservation of biology, experimental knowledge captured from genetic studies in eukaryotic model organisms provides insight into human cellular pathways and ultimately physiology. Yeast chemogenomic profiling is a powerful approach for annotating cellular responses to small molecules. Using an optimized platform, we provide the relative sensitivities of the heterozygous and homozygous deletion collections for nearly 1800 biologically active compounds. The data quality enables unique insights into pathways that are sensitive and resistant to a given perturbation, as demonstrated with both known and novel compounds. We present examples of novel compounds that inhibit the therapeutically relevant fatty acid synthase and desaturase (Fas1p and Ole1p), and demonstrate how the individual profiles facilitate hypothesis-driven experiments to delineate compound mechanism of action. Importantly, the scale and diversity of tested compounds yields a dataset where the number of modulated pathways approaches saturation. This resource can be used to map novel biological connections, and also identify functions for unannotated genes. We validated hypotheses generated by global two-way hierarchical clustering of profiles for (i) novel compounds with a similar mechanism of action acting upon microtubules or vacuolar ATPases, and (ii) an un-annotated ORF, YIL060w, that plays a role in respiration in the mitochondria. Finally, we identify and characterize background mutations in the widely used yeast deletion collection which should improve the interpretation of past and future screens throughout the community. This comprehensive resource of cellular responses enables the expansion of our understanding of eukaryotic pathway biology.


Assuntos
Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Antifúngicos/farmacologia , Vias Biossintéticas , Farmacorresistência Fúngica , Regulação Fúngica da Expressão Gênica , Ensaios de Triagem em Larga Escala , Dados de Sequência Molecular , Filogenia , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Nat Cell Biol ; 16(11): 1069-79, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25327288

RESUMO

Cells rely on autophagy to clear misfolded proteins and damaged organelles to maintain cellular homeostasis. In this study we use the new autophagy inhibitor PIK-III to screen for autophagy substrates. PIK-III is a selective inhibitor of VPS34 that binds a unique hydrophobic pocket not present in related kinases such as PI(3)Kα. PIK-III acutely inhibits autophagy and de novo lipidation of LC3, and leads to the stabilization of autophagy substrates. By performing ubiquitin-affinity proteomics on PIK-III-treated cells we identified substrates including NCOA4, which accumulates in ATG7-deficient cells and co-localizes with autolysosomes. NCOA4 directly binds ferritin heavy chain-1 (FTH1) to target the iron-binding ferritin complex with a relative molecular mass of 450,000 to autolysosomes following starvation or iron depletion. Interestingly, Ncoa4(-/-) mice exhibit a profound accumulation of iron in splenic macrophages, which are critical for the reutilization of iron from engulfed red blood cells. Taken together, the results of this study provide a new mechanism for selective autophagy of ferritin and reveal a previously unappreciated role for autophagy and NCOA4 in the control of iron homeostasis in vivo.


Assuntos
Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Ferritinas/metabolismo , Homeostase/fisiologia , Ferro/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Humanos , Lisossomos/metabolismo , Camundongos , Fagossomos/metabolismo , Ligação Proteica
17.
ACS Chem Biol ; 8(7): 1519-27, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23614532

RESUMO

Translation initiation is an emerging target in oncology and neurobiology indications. Naturally derived and synthetic rocaglamide scaffolds have been used to interrogate this pathway; however, there is uncertainty regarding their precise mechanism(s) of action. We exploited the genetic tractability of yeast to define the primary effect of both a natural and a synthetic rocaglamide in a cellular context and characterized the molecular target using biochemical studies and in silico modeling. Chemogenomic profiling and mutagenesis in yeast identified the eIF (eukaryotic Initiation Factor) 4A helicase homologue as the primary molecular target of rocaglamides and defined a discrete set of residues near the RNA binding motif that confer resistance to both compounds. Three of the eIF4A mutations were characterized regarding their functional consequences on activity and response to rocaglamide inhibition. These data support a model whereby rocaglamides stabilize an eIF4A-RNA interaction to either alter the level and/or impair the activity of the eIF4F complex. Furthermore, in silico modeling supports the annotation of a binding pocket delineated by the RNA substrate and the residues identified from our mutagenesis screen. As expected from the high degree of conservation of the eukaryotic translation pathway, these observations are consistent with previous observations in mammalian model systems. Importantly, we demonstrate that the chemically distinct silvestrol and synthetic rocaglamides share a common mechanism of action, which will be critical for optimization of physiologically stable derivatives. Finally, these data confirm the value of the rocaglamide scaffold for exploring the impact of translational modulation on disease.


Assuntos
Benzofuranos/metabolismo , Fator de Iniciação 4F em Eucariotos/química , Fator de Iniciação 4F em Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Benzofuranos/química , Sítios de Ligação , Modelos Biológicos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Triterpenos/química , Triterpenos/metabolismo
18.
Proc Natl Acad Sci U S A ; 103(47): 17840-5, 2006 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17095607

RESUMO

The rapamycin.FKBP12 complex inhibits target of rapamycin (TOR) kinase in TORC1. We screened the yeast nonessential gene deletion collection to identify mutants that conferred rapamycin resistance, and we identified PMR1, encoding the Golgi Ca2+/Mn2+ -ATPase. Deleting PMR1 in two genetic backgrounds confers rapamycin resistance. Epistasis analyses show that Pmr1 functions upstream from Npr1 and Gln-3 in opposition to Lst8, a regulator of TOR. Npr1 kinase is largely cytoplasmic, and a portion localizes to the Golgi where amino acid permeases are modified and sorted. Nuclear translocation of Gln-3 and Gln-3 reporter activity in pmr1 cells are impaired, but expression of functional Gap1 in the plasma membrane of a pmr1 strain in response to nitrogen limitation is enhanced. These two phenotypes suggest up-regulation of Npr1 function in the absence of Pmr1. Together, our results establish that Pmr1-dependent Ca2+ and/or Mn2+ ion homeostasis is necessary for TOR signaling.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Complexo de Golgi/enzimologia , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Transdução de Sinais/fisiologia , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Antifúngicos/metabolismo , ATPases Transportadoras de Cálcio/genética , Epistasia Genética , Regulação Fúngica da Expressão Gênica , Chaperonas Moleculares/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Sirolimo/metabolismo , Fatores de Transcrição/metabolismo
19.
Traffic ; 5(3): 194-210, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15086794

RESUMO

Ten class E Vps proteins in yeast are known components of the ESCRT complexes I, II and III, which are required for the sorting of proteins to the lumenal membranes of multivesicular bodies. We used the yeast 2 hybrid system to analyze the protein-protein interactions of all 17 soluble class E Vps proteins, as well as proteins thought to be required for the ubiquitination and deubiquitination of cargo proteins at multivesicular bodies. We identified novel interactions between yeast ESCRT complex components suggesting that ESCRTI binds to both ESCRTII and ESCRTIII. These interactions were confirmed by GST pull-down experiments. Our data indicate that the link between ESCRTI and ESCRTIII is via Vps28p and Vps37p/Srn2p binding directly to Vps20p, as well as through indirect interactions via ESCRTII. This is in contrast to the situation in mammalian cells where ESCRTI and ESCRTIII interact indirectly via ALIX, the mammalian homologue of yeast proteins Vps31p/Bro1p and Rim20p. Our data also enable us to link all soluble class E Vps proteins to the ESCRT complexes. We propose the formation of a large multimeric complex on the endosome membrane consisting of ESCRTI, ESCRTII, ESCRTIII and other associated proteins.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Cloreto de Cálcio/farmacologia , Meios de Cultura , Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , Genes Fúngicos/genética , Humanos , Íons/metabolismo , Íons/farmacologia , Cloreto de Lítio/farmacologia , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutação/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina Tiolesterase
20.
J Biol Chem ; 279(36): 37512-7, 2004 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-15247235

RESUMO

The GATA transcription factors GLN3 and GAT1 activate nitrogen-regulated genes in Saccharomyces cerevisiae. NPR1 is a protein kinase that controls post-Golgi sorting of amino acid permeases. In the presence of a good nitrogen source, TOR (target of rapamycin) maintains GLN3 and NPR1 phosphorylated and inactive by inhibiting the type 2A-related phosphatase SIT4. We identified NPR1 as a regulator of GLN3. Specifically, loss of NPR1 causes nuclear translocation and activation of GLN3, but not GAT1, in nitrogen-rich conditions. NPR1-mediated inhibition of GLN3 is independent of the phosphatase SIT4. We also demonstrate that the E3/E4 ubiquitin-protein ligase proteins RSP5 and BUL1/2 are required for GLN3 activation under poor nitrogen conditions. Thus, NPR1 and BUL1/2 antagonistically control GLN3-dependent transcription, suggesting a role for regulated ubiquitination in the control of nutrient-responsive transcription.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas Quinases/fisiologia , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Fatores de Transcrição/genética , Transcrição Gênica/fisiologia , Complexos Ubiquitina-Proteína Ligase/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte , Nitrogênio/fisiologia , Prolina/metabolismo , Sirolimo/farmacologia , Ubiquitina-Proteína Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA