Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 375(1): 76-91, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32764153

RESUMO

Sodium glucose cotransporter 2 inhibitors (SGLT2i) reduce cardiovascular events and onset and progression of renal disease by mechanisms that remain incompletely understood but may include clearance of interstitial congestion and reduced glomerular hydrostatic pressure. The ongoing DAPASALT mechanistic clinical study will evaluate natriuretic, diuretic, plasma/extracellular volume, and blood pressure responses to dapagliflozin in people with type 2 diabetes with normal or impaired renal function (D-PRF and D-IRF, respectively) and in normoglycemic individuals with renal impairment (N-IRF). In this study, a mathematical model of renal physiology, pathophysiology, and pharmacology was used to prospectively predict changes in sodium excretion, blood and interstitial fluid volume (IFV), blood pressure, glomerular filtration rate, and albuminuria in DAPASALT. After validating the model with previous diabetic nephropathy trials, virtual patients were matched to DAPASALT inclusion/exclusion criteria, and the DAPASALT protocol was simulated. Predicted changes in glycosuria, blood pressure, glomerular filtration rate, and albuminuria were consistent with other recent studies in similar populations. Predicted albuminuria reductions were 46% in D-PRF, 34.8% in D-IRF, and 14.2% in N-IRF. The model predicts a similarly large IFV reduction between D-PRF and D-IRF and less, but still substantial, IFV reduction in N-IRF, even though glycosuria is attenuated in groups with impaired renal function. When DAPASALT results become available, comparison with these simulations will provide a basis for evaluating how well we understand the cardiorenal mechanism(s) of SGLT2i. Meanwhile, these simulations link dapagliflozin's renal mechanisms to changes in IFV and renal biomarkers, suggesting that these benefits may extend to those with impaired renal function and individuals without diabetes. SIGNIFICANCE STATEMENT: Mechanisms of SGLT2 inhibitors' cardiorenal benefits remain incompletely understood. We used a mathematical model of renal physiology/pharmacology to prospectively predict responses to dapagliflozin in the ongoing DAPASALT study. Key predictions include similarly large interstitial fluid volume (IFV) reductions between subjects with normal and impaired renal function and less, but still substantial, IFV reduction in those without diabetes, even though glycosuria is attenuated in these groups. Comparing prospective simulations and study results will assess how well we understand the cardiorenal mechanism(s) of SGLT2 inhibitors.


Assuntos
Compostos Benzidrílicos/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/fisiopatologia , Taxa de Filtração Glomerular/efeitos dos fármacos , Glucosídeos/uso terapêutico , Rim/efeitos dos fármacos , Modelos Biológicos , Insuficiência Renal/fisiopatologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Compostos Benzidrílicos/efeitos adversos , Ensaios Clínicos Fase IV como Assunto , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/metabolismo , Taxa de Filtração Glomerular/fisiologia , Glucosídeos/efeitos adversos , Humanos , Rim/metabolismo , Rim/fisiopatologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Insuficiência Renal/metabolismo , Índice de Gravidade de Doença , Transportador 2 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos
2.
J Lipid Res ; 60(9): 1610-1621, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31292220

RESUMO

Since the discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9) as an attractive target in the treatment of hypercholesterolemia, multiple anti-PCSK9 therapeutic modalities have been pursued in drug development. The objective of this research is to set the stage for the quantitative benchmarking of two anti-PCSK9 pharmacological modality classes, monoclonal antibodies (mAbs) and small interfering RNA (siRNA). To this end, we developed an integrative mathematical model of lipoprotein homeostasis describing the dynamic interplay between PCSK9, LDL-cholesterol (LDL-C), VLDL-cholesterol, HDL-cholesterol (HDL-C), apoB, lipoprotein a [Lp(a)], and triglycerides (TGs). We demonstrate that LDL-C decreased proportionally to PCSK9 reduction for both mAb and siRNA modalities. At marketed doses, however, treatment with mAbs resulted in an additional ∼20% LDL-C reduction compared with siRNA. We further used the model as an evaluation tool and determined that no quantitative differences were observed in HDL-C, Lp(a), TG, or apoB responses, suggesting that the disruption of PCSK9 synthesis would provide no additional effects on lipoprotein-related biomarkers in the patient segment investigated. Predictive model simulations further indicate that siRNA therapies may reach reductions in LDL-C levels comparable to those achieved with mAbs if the current threshold of 80% PCSK9 inhibition via siRNA could be overcome.


Assuntos
Hipercolesterolemia/sangue , Hipercolesterolemia/metabolismo , Modelos Teóricos , Pró-Proteína Convertase 9/sangue , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais Humanizados/sangue , Apolipoproteínas B/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , VLDL-Colesterol/sangue , Humanos , Lipoproteína(a)/sangue , RNA Interferente Pequeno/genética , Triglicerídeos/sangue
3.
Diabetes Obes Metab ; 21(12): 2684-2693, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31423699

RESUMO

AIM: To develop a quantitative drug-disease systems model to investigate the paradox that sodium-glucose co-transporter (SGLT)2 is responsible for >80% of proximal tubule glucose reabsorption, yet SGLT2 inhibitor treatment results in only 30% to 50% less reabsorption in patients with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS: A physiologically based four-compartment model of renal glucose filtration, reabsorption and excretion via SGLT1 and SGLT2 was developed as a system of ordinary differential equations using R/IQRtools. SGLT2 inhibitor pharmacokinetics and pharmacodynamics were estimated from published concentration-time profiles in plasma and urine and from urinary glucose excretion (UGE) in healthy people and people with T2DM. RESULTS: The final model showed that higher renal glucose reabsorption in people with T2DM versus healthy people was associated with 54% and 28% greater transporter capacity for SGLT1 and SGLT2, respectively. Additionally, the analysis showed that UGE is highly dependent on mean plasma glucose and estimated glomerular filtration rate (eGFR) and that their consideration is critical for interpreting clinical UGE findings. CONCLUSIONS: Quantitative drug-disease system modelling revealed mechanistic differences in renal glucose reabsorption and UGE between healthy people and those with T2DM, and clearly showed that SGLT2 inhibition significantly increased glucose available to SGLT1 downstream in the tubule. Importantly, we found that the findings of lower than expected UGE with SGLT2 inhibition are explained by the shift to SGLT1, which recovered additional glucose (~30% of total).


Assuntos
Diabetes Mellitus Tipo 2 , Glicosúria , Transportador 1 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Transportador 2 de Glucose-Sódio/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/urina , Glicosúria/metabolismo , Glicosúria/urina , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Modelos Biológicos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
4.
Am J Physiol Renal Physiol ; 315(5): F1295-F1306, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30019930

RESUMO

The mechanisms of cardiovascular and renal protection observed in clinical trials of sodium-glucose cotransporter 2 (SGLT2) inhibitors (SGLT2i) are incompletely understood and likely multifactorial, including natriuretic, diuretic, and antihypertensive effects, glomerular pressure reduction, and lowering of plasma and interstitial fluid volume. To quantitatively evaluate the contribution of proposed SGLT2i mechanisms of action on changes in renal hemodynamics and volume status, we coupled a mathematical model of renal function and volume homeostasis with clinical data in healthy subjects administered 10 mg of dapagliflozin once daily. The minimum set of mechanisms necessary to reproduce observed clinical responses (urinary sodium and water excretion, serum creatinine and sodium) was determined, and important unobserved physiological variables (glomerular pressure, blood and interstitial fluid volume) were then simulated. We further simulated the response to SGLT2i in diabetic virtual patients with and without renal impairment. Multiple mechanisms were required to explain the observed response: 1) direct inhibition of sodium and glucose reabsorption through SGLT2, 2) SGLT2-driven inhibition of Na+/H+ exchanger 3 sodium reabsorption, and 3) osmotic diuresis coupled with peripheral sodium storage. The model also showed that the consequences of these mechanisms include lowering of glomerular pressure, reduction of blood and interstitial fluid volume, and mild blood pressure reduction, in agreement with clinical observations. The simulations suggest that these effects are more significant in diabetic patients than healthy subjects and that while glucose excretion may diminish with renal impairment, improvements in glomerular pressure and blood volume are not diminished at lower glomerular filtration rate, suggesting that cardiorenal benefits of SGLT2i may be sustained in renally impaired patients.


Assuntos
Compostos Benzidrílicos/uso terapêutico , Sistema Cardiovascular/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucosídeos/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Rim/efeitos dos fármacos , Modelos Cardiovasculares , Insuficiência Renal Crônica/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Transportador 2 de Glucose-Sódio/metabolismo , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatologia , Simulação por Computador , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Diurese/efeitos dos fármacos , Taxa de Filtração Glomerular/efeitos dos fármacos , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Humanos , Rim/metabolismo , Rim/fisiopatologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Reabsorção Renal/efeitos dos fármacos , Transportador 1 de Glucose-Sódio/metabolismo , Resultado do Tratamento
5.
Diabetes Obes Metab ; 20(3): 479-487, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29024278

RESUMO

The effect of a sodium glucose cotransporter 2 inhibitor (SGLT2i) in reducing heart failure hospitalization in the EMPA-REG OUTCOMES trial has raised the possibility of using these agents to treat established heart failure. We hypothesize that osmotic diuresis induced by SGLT2 inhibition, a distinctly different diuretic mechanism than that of other diuretic classes, results in greater electrolyte-free water clearance and, ultimately, in greater fluid clearance from the interstitial fluid (IF) space than from the circulation, potentially resulting in congestion relief with minimal impact on blood volume, arterial filling and organ perfusion. We utilize a mathematical model to illustrate that electrolyte-free water clearance results in a greater reduction in IF volume compared to blood volume, and that this difference may be mediated by peripheral sequestration of osmotically inactive sodium. By coupling the model with data on plasma and urinary sodium and water in healthy subjects who received either the SGLT2i dapagliflozin or loop diuretic bumetanide, we predict that dapagliflozin produces a 2-fold greater reduction in IF volume compared to blood volume, while the reduction in IF volume with bumetanide is only 78% of the reduction in blood volume. Heart failure is characterized by excess fluid accumulation, in both the vascular compartment and interstitial space, yet many heart failure patients have arterial underfilling because of low cardiac output, which may be aggravated by conventional diuretic treatment. Thus, we hypothesize that, by reducing IF volume to a greater extent than blood volume, SGLT2 inhibitors might provide better control of congestion without reducing arterial filling and perfusion.


Assuntos
Compostos Benzidrílicos/farmacologia , Bumetanida/farmacologia , Diuréticos/farmacologia , Glucosídeos/farmacologia , Insuficiência Cardíaca/prevenção & controle , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Adulto , Compostos Benzidrílicos/administração & dosagem , Volume Sanguíneo/efeitos dos fármacos , Bumetanida/administração & dosagem , Diurese/efeitos dos fármacos , Combinação de Medicamentos , Interações Medicamentosas , Feminino , Glucosídeos/administração & dosagem , Insuficiência Cardíaca/urina , Hospitalização/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Concentração Osmolar , Sódio/urina , Inibidores do Transportador 2 de Sódio-Glicose/administração & dosagem , Desequilíbrio Hidroeletrolítico/fisiopatologia , Adulto Jovem
6.
Diabetes Obes Metab ; 20(8): 2034-2038, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29663628

RESUMO

This study aimed to quantify the effect of the immediate release (IR) of exenatide, a short-acting glucagon-like peptide-1 (GLP-1) receptor agonist (GLP-1RA), on gastric emptying rate (GER) and the glucose rate of appearance (GluRA), and evaluate the influence of drug characteristics and food-related factors on postprandial plasma glucose (PPG) stabilization under GLP-1RA treatment. A quantitative systems pharmacology (QSP) approach was used, and the proposed model was based on data from published sources including: (1) GLP-1 and exenatide plasma concentration-time profiles; (2) GER estimates under placebo, GLP-1 or exenatide IR dosing; and (3) GluRA measurements upon food intake. According to the model's predictions, the recommended twice-daily 5- and 10-µg exenatide IR treatment is associated with GluRA flattening after morning and evening meals (48%-49%), whereas the midday GluRA peak is affected to a lesser degree (5%-30%) due to lower plasma drug concentrations. This effect was dose-dependent and influenced by food carbohydrate content, but not by the lag time between exenatide injection and meal ingestion. Hence, GER inhibition by exenatide IR represents an important additional mechanism of its effect on PPG.


Assuntos
Carboidratos da Dieta/metabolismo , Exenatida/uso terapêutico , Esvaziamento Gástrico/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Incretinas/uso terapêutico , Absorção Intestinal/efeitos dos fármacos , Modelos Biológicos , Glicemia/análise , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Digestão/efeitos dos fármacos , Relação Dose-Resposta a Droga , Esquema de Medicação , Liberação Controlada de Fármacos , Exenatida/administração & dosagem , Exenatida/sangue , Exenatida/farmacocinética , Peptídeo 1 Semelhante ao Glucagon/sangue , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Hiperglicemia/prevenção & controle , Hipoglicemia/prevenção & controle , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/sangue , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/uso terapêutico , Incretinas/administração & dosagem , Incretinas/sangue , Incretinas/farmacocinética , Período Pós-Prandial , Biologia de Sistemas
7.
J Pharmacokinet Pharmacodyn ; 45(3): 469-482, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29556866

RESUMO

Modeling the relationship between drug concentrations and heart rate corrected QT interval (QTc) change from baseline (C-∆QTc), based on Phase I single ascending dose (SAD) or multiple ascending dose (MAD) studies, has been proposed as an alternative to thorough QT studies (TQT), in assessing drug-induced QT prolongation risk. The present analysis used clinical SAD, MAD and TQT study data of an experimental compound, AZD5672, to evaluate the performance of: (i) three computational platforms (linear mixed-effects modeling implemented via PROC MIXED in SAS, as well as in R using LME4 package and linear quantile mixed models (LQMM) implemented via LQMM package; (ii) different model structures with and without treatment- or time-specific intercepts; and (iii) three methods for calculating the confidence interval (CI) of QTc prolongation (analytical and bootstrap methods with fixed or varied geometric mean concentrations). We show that treatment- and time-specific intercepts may need to be included into C-∆QTc modeling through PROC MIXED or LME4, regardless of their statistical significance. With the intersection union test (IUT) in the TQT study as a reference for comparison, inclusion of these intercepts increased the feasibility for C-∆QTc modelling of SAD or MAD to reach the same conclusion as the IUT analysis based on TQT study. Compared to PROC MIXED or LME4, the LQMM method is less dependent on inclusion of treatment- or time-specific intercepts, and the bootstrap CI calculation methods provided higher likelihood for C-∆QTc modeling of SAD and MAD studies to reach the same conclusion as the IUT based on the TQT study.


Assuntos
Benzenoacetamidas/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Sulfonamidas/farmacologia , Intervalos de Confiança , Relação Dose-Resposta a Droga , Método Duplo-Cego , Eletrocardiografia/métodos , Feminino , Voluntários Saudáveis , Humanos , Modelos Lineares , Masculino
8.
Pharm Stat ; 17(2): 155-168, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29322659

RESUMO

Model-informed drug discovery and development offers the promise of more efficient clinical development, with increased productivity and reduced cost through scientific decision making and risk management. Go/no-go development decisions in the pharmaceutical industry are often driven by effect size estimates, with the goal of meeting commercially generated target profiles. Sufficient efficacy is critical for eventual success, but the decision to advance development phase is also dependent on adequate knowledge of appropriate dose and dose-response. Doses which are too high or low pose risk of clinical or commercial failure. This paper addresses this issue and continues the evolution of formal decision frameworks in drug development. Here, we consider the integration of both efficacy and dose-response estimation accuracy into the go/no-go decision process, using a model-based approach. Using prespecified target and lower reference values associated with both efficacy and dose accuracy, we build a decision framework to more completely characterize development risk. Given the limited knowledge of dose response in early development, our approach incorporates a set of dose-response models and uses model averaging. The approach and its operating characteristics are illustrated through simulation. Finally, we demonstrate the decision approach on a post hoc analysis of the phase 2 data for naloxegol (a drug approved for opioid-induced constipation).


Assuntos
Ensaios Clínicos Fase II como Assunto/métodos , Tomada de Decisões , Desenvolvimento de Medicamentos/métodos , Morfinanos/administração & dosagem , Antagonistas de Entorpecentes/administração & dosagem , Polietilenoglicóis/administração & dosagem , Ensaios Clínicos Fase II como Assunto/estatística & dados numéricos , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos/estatística & dados numéricos , Descoberta de Drogas/métodos , Descoberta de Drogas/estatística & dados numéricos , Indústria Farmacêutica/métodos , Indústria Farmacêutica/estatística & dados numéricos , Humanos
9.
Am J Physiol Renal Physiol ; 312(5): F819-F835, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28148531

RESUMO

Glomerular hypertension and hyperfiltration in early diabetes are associated with development and progression of diabetic kidney disease. The tubular hypothesis of diabetic hyperfiltration proposes that it is initiated by a primary increase in sodium (Na) reabsorption in the proximal tubule (PT) and the resulting tubuloglomerular feedback (TGF) response and lowering of Bowman space pressure (PBow). Here we utilized a mathematical model of the human kidney to investigate over acute and chronic timescales the mechanisms responsible for the magnitude of the hyperfiltration response. The model implicates that the primary hyperreabsorption of Na in the PT produces a Na imbalance that is only partially restored by the hyperfiltration induced by TGF and changes in PBow Thus secondary adaptations are needed to restore Na balance. This may include neurohumoral transport regulation and/or pressure-natriuresis (i.e., the decrease in Na reabsorption in response to increased renal perfusion pressure). We explored the role of each tubular segment in contributing to this compensation and the consequences of impairment in tubular compensation. The simulations indicate that impaired secondary downregulation of transport potentiated the rise in glomerular hypertension and hyperfiltration needed to restore Na balance at a given level of primary PT hyperreabsorption. Therefore, we propose for the first time that both the extent of primary PT hyperreabsorption and the degree of impairment of the distal tubular responsiveness to regulatory signals determine the level of glomerular hypertension and hyperfiltration in the diabetic kidney, thereby extending the tubule-centric concept of diabetic hyperfiltration and potential therapeutic approaches beyond the proximal tubule.


Assuntos
Nefropatias Diabéticas/metabolismo , Taxa de Filtração Glomerular , Hipertensão Renal/metabolismo , Glomérulos Renais/metabolismo , Túbulos Renais Proximais/metabolismo , Modelos Biológicos , Reabsorção Renal , Sódio/metabolismo , Animais , Transporte Biológico , Simulação por Computador , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/fisiopatologia , Retroalimentação Fisiológica , Hemodinâmica , Humanos , Hipertensão Renal/etiologia , Hipertensão Renal/fisiopatologia , Glomérulos Renais/fisiopatologia , Túbulos Renais Proximais/fisiopatologia , Natriurese , Circulação Renal , Especificidade da Espécie , Fatores de Tempo , Equilíbrio Hidroeletrolítico
10.
Front Immunol ; 15: 1357706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846946

RESUMO

Introduction: In vivo T cell migration has been of interest to scientists for the past 60 years. T cell kinetics are important in the understanding of the immune response to infectious agents. More recently, adoptive T cell therapies have proven to be a most promising approach to treating a wide range of diseases, including autoimmune and cancer diseases, whereby the characterization of cellular kinetics represents an important step towards the prediction of therapeutic efficacy. Methods: Here, we developed a physiologically-based pharmacokinetic (PBPK) model that describes endogenous T cell homeostasis and the kinetics of exogenously administered T cells in mouse. Parameter calibration was performed using a nonlinear fixed-effects modeling approach based on published data on T cell kinetics and steady-state levels in different tissues of mice. The Partial Rank Correlation Coefficient (PRCC) method was used to perform a global sensitivity assessment. To estimate the impact of kinetic parameters on exogenously administered T cell dynamics, a local sensitivity analysis was conducted. Results: We simulated the model to analyze cellular kinetics following various T cell doses and frequencies of CCR7+ T cells in the population of infused lymphocytes. The model predicted the effects of T cell numbers and of population composition of infused T cells on the resultant concentration of T cells in various organs. For example, a higher percentage of CCR7+ T cells among exogenously administered T lymphocytes led to an augmented accumulation of T cells in the spleen. The model predicted a linear dependence of T cell dynamics on the dose of adoptively transferred T cells. Discussion: The mathematical model of T cell migration presented here can be integrated into a multi-scale model of the immune system and be used in a preclinical setting for predicting the distribution of genetically modified T lymphocytes in various organs, following adoptive T cell therapies.


Assuntos
Linfócitos T , Animais , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Movimento Celular , Imunoterapia Adotiva/métodos , Modelos Teóricos , Terapia Baseada em Transplante de Células e Tecidos/métodos
11.
Front Immunol ; 15: 1321309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469297

RESUMO

Background: The thymus plays a central role in shaping human immune function. A mechanistic, quantitative description of immune cell dynamics and thymic output under homeostatic conditions and various patho-physiological scenarios are of particular interest in drug development applications, e.g., in the identification of potential therapeutic targets and selection of lead drug candidates against infectious diseases. Methods: We here developed an integrative mathematical model of thymocyte dynamics in human. It incorporates mechanistic features of thymocyte homeostasis as well as spatial constraints of the thymus and considerations of age-dependent involution. All model parameter estimates were obtained based on published physiological data of thymocyte dynamics and thymus properties in mouse and human. We performed model sensitivity analyses to reveal potential therapeutic targets through an identification of processes critically affecting thymic function; we further explored differences in thymic function across healthy subjects, multiple sclerosis patients, and patients on fingolimod treatment. Results: We found thymic function to be most impacted by the egress, proliferation, differentiation and death rates of those thymocytes which are most differentiated. Model predictions also showed that the clinically observed decrease in relapse risk with age, in multiple sclerosis patients who would have discontinued fingolimod therapy, can be explained mechanistically by decreased thymic output with age. Moreover, we quantified the effects of fingolimod treatment duration on thymic output. Conclusions: In summary, the proposed model accurately describes, in mechanistic terms, thymic output as a function of age. It may be further used to perform predictive simulations of clinically relevant scenarios which combine specific patho-physiological conditions and pharmacological interventions of interest.


Assuntos
Esclerose Múltipla , Timócitos , Humanos , Camundongos , Animais , Timócitos/metabolismo , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Cloridrato de Fingolimode/metabolismo , Timo , Diferenciação Celular , Esclerose Múltipla/metabolismo
12.
Front Immunol ; 15: 1371620, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550585

RESUMO

The research & development (R&D) of novel therapeutic agents for the treatment of autoimmune diseases is challenged by highly complex pathogenesis and multiple etiologies of these conditions. The number of targeted therapies available on the market is limited, whereas the prevalence of autoimmune conditions in the global population continues to rise. Mathematical modeling of biological systems is an essential tool which may be applied in support of decision-making across R&D drug programs to improve the probability of success in the development of novel medicines. Over the past decades, multiple models of autoimmune diseases have been developed. Models differ in the spectra of quantitative data used in their development and mathematical methods, as well as in the level of "mechanistic granularity" chosen to describe the underlying biology. Yet, all models strive towards the same goal: to quantitatively describe various aspects of the immune response. The aim of this review was to conduct a systematic review and analysis of mathematical models of autoimmune diseases focused on the mechanistic description of the immune system, to consolidate existing quantitative knowledge on autoimmune processes, and to outline potential directions of interest for future model-based analyses. Following a systematic literature review, 38 models describing the onset, progression, and/or the effect of treatment in 13 systemic and organ-specific autoimmune conditions were identified, most models developed for inflammatory bowel disease, multiple sclerosis, and lupus (5 models each). ≥70% of the models were developed as nonlinear systems of ordinary differential equations, others - as partial differential equations, integro-differential equations, Boolean networks, or probabilistic models. Despite covering a relatively wide range of diseases, most models described the same components of the immune system, such as T-cell response, cytokine influence, or the involvement of macrophages in autoimmune processes. All models were thoroughly analyzed with an emphasis on assumptions, limitations, and their potential applications in the development of novel medicines.


Assuntos
Doenças Autoimunes , Esclerose Múltipla , Humanos , Doenças Autoimunes/terapia , Doenças Autoimunes/tratamento farmacológico , Modelos Teóricos , Imunidade , Linfócitos T
13.
Front Cardiovasc Med ; 10: 1242845, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304061

RESUMO

Aims: To develop a model-informed methodology for the optimization of the Major Adverse Cardiac Events (MACE) composite endpoint, based on a model-based meta-analysis across anti-hypercholesterolemia trials of statin and anti-PCSK9 drugs. Methods and results: Mixed-effects meta-regression modeling of stand-alone MACE outcomes was performed, with therapy type, population demographics, baseline and change over time in lipid biomarkers as predictors. Randomized clinical trials up to June 28, 2022, of either statins or anti-PCSK9 therapies were identified through a systematic review process in PubMed and ClinicalTrials.gov databases. In total, 54 studies (270,471 patients) were collected, reporting 15 different single cardiovascular events. Treatment-mediated decrease in low density lipoprotein cholesterol, baseline levels of remnant and high-density lipoprotein cholesterol as well as non-lipid population characteristics and type of therapy were identified as significant covariates for 10 of the 15 outcomes. The required sample size per composite 3- and 4-point MACE endpoint was calculated based on the estimated treatment effects in a population and frequencies of the incorporated events in the control group, trial duration, and uncertainty in model parameters. Conclusion: A quantitative tool was developed and used to benchmark different compositions of 3- and 4-point MACE for statins and anti-PCSK9 therapies, based on the minimum population size required to achieve statistical significance in relative risk reduction, following meta-regression modeling of the single MACE components. The approach we developed may be applied towards the optimization of the design of future trials in dyslipidemia disorders as well as in other therapeutic areas.

14.
CPT Pharmacometrics Syst Pharmacol ; 11(4): 425-437, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35064957

RESUMO

Clinical trials investigate treatment endpoints that usually include measurements of pharmacodynamic and efficacy biomarkers in early-phase studies and patient-reported outcomes as well as event risks or rates in late-phase studies. In recent years, a systematic trend in clinical trial data analytics and modeling has been observed, where retrospective data are integrated into a quantitative framework to prospectively support analyses of interim data and design of ongoing and future studies of novel therapeutics. Joint modeling is an advanced statistical methodology that allows for the investigation of clinical trial outcomes by quantifying the association between baseline and/or longitudinal biomarkers and event risk. Using an exemplar data set from non-small cell lung cancer studies, we propose and test a workflow for joint modeling. It allows a modeling scientist to comprehensively explore the data, build survival models, investigate goodness-of-fit, and subsequently perform outcome predictions using interim biomarker data from an ongoing study. The workflow illustrates a full process, from data exploration to predictive simulations, for selected multivariate linear and nonlinear mixed-effects models and software tools in an integrative and exhaustive manner.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Biomarcadores/análise , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Estudos Longitudinais , Modelos Estatísticos , Estudos Retrospectivos , Fluxo de Trabalho
15.
CPT Pharmacometrics Syst Pharmacol ; 10(1): 67-74, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33319498

RESUMO

Therapy optimization remains an important challenge in the treatment of advanced non-small cell lung cancer (NSCLC). We investigated tumor size (sum of the longest diameters (SLD) of target lesions) and neutrophil-to-lymphocyte ratio (NLR) as longitudinal biomarkers for survival prediction. Data sets from 335 patients with NSCLC from study NCT02087423 and 202 patients with NSCLC from study NCT01693562 of durvalumab were used for model qualification and validation, respectively. Nonlinear Bayesian joint models were designed to assess the impact of longitudinal measurements of SLD and NLR on patient subgrouping (by Response Evaluation Criteria in Solid Tumors 1.1 criteria at 3 months after therapy start), long-term survival, and precision of survival predictions. Various validation scenarios were investigated. We determined a more distinct patient subgrouping and a substantial increase in the precision of survival estimates after the incorporation of longitudinal measurements. The highest performance was achieved using a multivariate SLD and NLR model, which enabled predictions of NSCLC clinical outcomes.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Linfócitos/efeitos dos fármacos , Modelos Biológicos , Neutrófilos/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Reprodutibilidade dos Testes
16.
Artigo em Inglês | MEDLINE | ID: mdl-33488073

RESUMO

BACKGROUND: Lung function, measured as forced expiratory volume in one second (FEV1), and exacerbations are two endpoints evaluated in chronic obstructive pulmonary disease (COPD) clinical trials. Joint analysis of these endpoints could potentially increase statistical power and enable assessment of efficacy in shorter and smaller clinical trials. OBJECTIVE: To evaluate joint modelling as a tool for analyzing treatment effects in COPD clinical trials by quantifying the association between longitudinal improvements in FEV1 and exacerbation risk reduction. METHODS: A joint model of longitudinal FEV1 and exacerbation risk was developed based on patient-level data from a Phase III clinical study in moderate-to-severe COPD (1740 patients), evaluating efficacy of fixed-dose combinations of a long-acting bronchodilator, formoterol, and an inhaled corticosteroid, budesonide. Two additional studies (1604 and 1042 patients) were used for external model validation and parameter re-estimation. RESULTS: A significant (p<0.0001) association between FEV1 and exacerbation risk was estimated, with an approximate 10% reduction in exacerbation risk per 100 mL improvement in FEV1, consistent across trials and treatment arms. The risk reduction associated with improvements in FEV1 was relatively small compared to the overall exacerbation risk reduction for treatment arms including budesonide (10-15% per 160 µg budesonide). High baseline breathlessness score and previous history of exacerbations also influenced the risk of exacerbation. CONCLUSION: Joint modelling can be used to co-analyze longitudinal FEV1 and exacerbation data in COPD clinical trials. The association between the endpoints was consistent and appeared unrelated to treatment mechanism, suggesting that improved lung function is indicative of an exacerbation risk reduction. The risk reduction associated with improved FEV1 was, however, generally small and no major impact on exacerbation trial design can be expected based on FEV1 alone. Further exploration with other longitudinal endpoints should be considered to further evaluate the use of joint modelling in analyzing COPD clinical trials.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Administração por Inalação , Broncodilatadores/efeitos adversos , Budesonida/uso terapêutico , Combinação de Medicamentos , Volume Expiratório Forçado , Fumarato de Formoterol/uso terapêutico , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Testes de Função Respiratória
17.
Front Immunol ; 12: 617316, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33737925

RESUMO

Background: Adenosine receptor type 2 (A2AR) inhibitor, AZD4635, has been shown to reduce immunosuppressive adenosine effects within the tumor microenvironment (TME) and to enhance the efficacy of checkpoint inhibitors across various syngeneic models. This study aims at investigating anti-tumor activity of AZD4635 alone and in combination with an anti-PD-L1-specific antibody (anti-PD-L1 mAb) across various TME conditions and at identifying, via mathematical quantitative modeling, a therapeutic combination strategy to further improve treatment efficacy. Methods: The model is represented by a set of ordinary differential equations capturing: 1) antigen-dependent T cell migration into the tumor, with subsequent proliferation and differentiation into effector T cells (Teff), leading to tumor cell lysis; 2) downregulation of processes mediated by A2AR or PD-L1, as well as other immunosuppressive mechanisms; 3) A2AR and PD-L1 inhibition by, respectively, AZD4635 and anti-PD-L1 mAb. Tumor size dynamics data from CT26, MC38, and MCA205 syngeneic mice treated with vehicle, anti-PD-L1 mAb, AZD4635, or their combination were used to inform model parameters. Between-animal and between-study variabilities (BAV, BSV) in treatment efficacy were quantified using a non-linear mixed-effects methodology. Results: The model reproduced individual and cohort trends in tumor size dynamics for all considered treatment regimens and experiments. BSV and BAV were explained by variability in T cell-to-immunosuppressive cell (ISC) ratio; BSV was additionally driven by differences in intratumoral adenosine content across the syngeneic models. Model sensitivity analysis and model-based preclinical study simulations revealed therapeutic options enabling a potential increase in AZD4635-driven efficacy; e.g., adoptive cell transfer or treatments affecting adenosine-independent immunosuppressive pathways. Conclusions: The proposed integrative modeling framework quantitatively characterized the mechanistic activity of AZD4635 and its potential added efficacy in therapy combinations, across various immune conditions prevailing in the TME. Such a model may enable further investigations, via simulations, of mechanisms of tumor resistance to treatment and of AZD4635 combination optimization strategies.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Antineoplásicos/farmacologia , Modelos Biológicos , Receptor A2A de Adenosina/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Algoritmos , Animais , Antineoplásicos Imunológicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Linhagem Celular Tumoral , Suscetibilidade a Doenças , Resistencia a Medicamentos Antineoplásicos , Quimioterapia Combinada , Isoenxertos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Pharmacokinet Pharmacodyn ; 37(6): 629-44, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21132572

RESUMO

We introduce how biophysical modeling in pharmaceutical research and development, combining physiological observations at the tissue, organ and system level with selected drug physiochemical properties, may contribute to a greater and non-intuitive understanding of drug pharmacokinetics and therapeutic design. Based on rich first-principle knowledge combined with experimental data at both conception and calibration stages, and leveraging our insights on disease processes and drug pharmacology, biophysical modeling may provide a novel and unique opportunity to interactively characterize detailed drug transport, distribution, and subsequent therapeutic effects. This innovative approach is exemplified through a three-dimensional (3D) computational fluid dynamics model of the spinal canal motivated by questions arising during pharmaceutical development of one molecular therapy for spinal cord injury. The model was based on actual geometry reconstructed from magnetic resonance imaging data subsequently transformed in a parametric 3D geometry and a corresponding finite-volume representation. With dynamics controlled by transient Navier-Stokes equations, the model was implemented in a commercial multi-physics software environment established in the automotive and aerospace industries. While predictions were performed in silico, the underlying biophysical models relied on multiple sources of experimental data and knowledge from scientific literature. The results have provided insights into the primary factors that can influence the intrathecal distribution of drug after lumbar administration. This example illustrates how the approach connects the causal chain underlying drug distribution, starting with the technical aspect of drug delivery systems, through physiology-driven drug transport, then eventually linking to tissue penetration, binding, residence, and ultimately clearance. Currently supporting our drug development projects with an improved understanding of systems physiology, biophysical models are being increasingly used to characterize drug transport and distribution in human tissues where pharmacokinetic measurements are difficult or impossible to perform. Importantly, biophysical models can describe emergent properties of a system, i.e. properties not identifiable through the study of the system's components taken in isolation.


Assuntos
Modelos Anatômicos , Modelos Biológicos , Preparações Farmacêuticas/líquido cefalorraquidiano , Farmacocinética , Canal Medular/anatomia & histologia , Canal Medular/fisiologia , Animais , Biologia Computacional/métodos , Simulação por Computador , Humanos , Hidrodinâmica , Injeções Espinhais , Preparações Farmacêuticas/administração & dosagem , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Distribuição Tecidual
19.
Front Oncol ; 10: 1609, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32984027

RESUMO

Objectives: The goal of this quantitative research was to evaluate the impact of various factors (e.g., scheduling or radiotherapy (RT) type) on outcomes for RT vs. RT in combination with immune checkpoint inhibitors (ICI), in the treatment of brain metastases, via a meta-analysis. Methods: Clinical studies with at least one ICI+RT treatment combination arm with brain metastasis patients were identified via a systematic literature search. Data on 1-year overall survival (OS), 1-year local control (LC) and radionecrosis rate (RNR) were extracted; for combination studies which included an RT monotherapy arm, odds ratios (OR) for the aforementioned endpoints were additionally calculated and analyzed. Mixed-effects meta-analysis models were tested to evaluate impact on outcome, for different factors such as combination treatment scheduling and the type of ICI or RT used. Results: 40 studies representing a total of 4,359 patients were identified. Higher 1-year OS was observed in ICI and RT combination vs. RT alone, with corresponding incidence rates of 59% [95% CI: 54-63%] vs. 32% [95% CI: 25-39%] (P < 0.001). Concurrent ICI and RT treatment was associated with significantly higher 1-year OS vs. sequential combinations: 68% [95% CI: 60-75%] vs. 54% [95% CI: 47-61%]. No statistically significant differences were observed in 1-year LC and RNR, when comparing combinations vs. RT monotherapies, with 1-year LC rates of 68% [95% CI: 40-90%] vs. 72% [95% CI: 63-80%] (P = 0.73) and RNR rates of 6% [95% CI: 2-13%] vs. 9% [95% CI: 5-14%] (P = 0.37). Conclusions: A comprehensive, study-level meta-analysis of brain metastasis disease treatments suggest that combinations of RT and ICI result in higher OS, yet comparable neurotoxicity profiles vs. RT alone, with a superiority of concurrent vs. sequential combination regimens. A similar meta-analysis using patient-level data from past trials, as well as future prospective randomized trials would help confirming these findings.

20.
Cell Mol Gastroenterol Hepatol ; 10(1): 149-170, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32112828

RESUMO

BACKGROUND & AIMS: Disturbances of the enterohepatic circulation of bile acids (BAs) are seen in a number of clinically important conditions, including metabolic disorders, hepatic impairment, diarrhea, and gallstone disease. To facilitate the exploration of underlying pathogenic mechanisms, we developed a mathematical model built on quantitative physiological observations across different organs. METHODS: The model consists of a set of kinetic equations describing the syntheses of cholic, chenodeoxycholic, and deoxycholic acids, as well as time-related changes of their respective free and conjugated forms in the systemic circulation, the hepatoportal region, and the gastrointestinal tract. The core structure of the model was adapted from previous modeling research and updated based on recent mechanistic insights, including farnesoid X receptor-mediated autoregulation of BA synthesis and selective transport mechanisms. The model was calibrated against existing data on BA distribution and feedback regulation. RESULTS: According to model-based predictions, changes in intestinal motility, BA absorption, and biotransformation rates affected BA composition and distribution differently, as follows: (1) inhibition of transintestinal BA flux (eg, in patients with BA malabsorption) or acceleration of intestinal motility, followed by farnesoid X receptor down-regulation, was associated with colonic BA accumulation; (2) in contrast, modulation of the colonic absorption process was predicted to not affect the BA pool significantly; and (3) activation of ileal deconjugation (eg, in patents with small intestinal bacterial overgrowth) was associated with an increase in the BA pool, owing to higher ileal permeability of unconjugated BA species. CONCLUSIONS: This model will be useful in further studying how BA enterohepatic circulation modulation may be exploited for therapeutic benefits.


Assuntos
Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Modelos Biológicos , Diarreia/metabolismo , Diarreia/patologia , Circulação Êntero-Hepática/fisiologia , Vesícula Biliar/metabolismo , Vesícula Biliar/patologia , Cálculos Biliares/metabolismo , Cálculos Biliares/patologia , Motilidade Gastrointestinal/fisiologia , Humanos , Íleo/metabolismo , Absorção Intestinal/fisiologia , Mucosa Intestinal/metabolismo , Fígado/patologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA