Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 290(22): 14031-44, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25882847

RESUMO

CDT (Clostridium difficile transferase) is a binary, actin ADP-ribosylating toxin frequently associated with hypervirulent strains of the human enteric pathogen C. difficile, the most serious cause of antibiotic-associated diarrhea and pseudomembranous colitis. CDT leads to the collapse of the actin cytoskeleton and, eventually, to cell death. Low doses of CDT result in the formation of microtubule-based protrusions on the cell surface that increase the adherence and colonization of C. difficile. The lipolysis-stimulated lipoprotein receptor (LSR) is the host cell receptor for CDT, and our aim was to gain a deeper insight into the interplay between both proteins. We show that CDT interacts with the extracellular, Ig-like domain of LSR with an affinity in the nanomolar range. We identified LSR splice variants in the colon carcinoma cell line HCT116 and disrupted the LSR gene in these cells by applying the CRISPR-Cas9 technology. LSR truncations ectopically expressed in LSR knock-out cells indicated that intracellular parts of LSR are not essential for plasma membrane targeting of the receptor and cellular uptake of CDT. By generating a series of N- and C-terminal truncations of the binding component of CDT (CDTb), we found that amino acids 757-866 of CDTb are sufficient for binding to LSR. With a transposon-based, random mutagenesis approach, we identified potential LSR-interacting epitopes in CDTb. This study increases our understanding about the interaction between CDT and its receptor LSR, which is key to the development of anti-toxin strategies for preventing cell entry of the toxin.


Assuntos
ADP Ribose Transferases/metabolismo , Proteínas de Bactérias/metabolismo , Clostridioides difficile/metabolismo , Receptores de LDL/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Membrana Celular/metabolismo , Endocitose , Epitopos/metabolismo , Citometria de Fluxo , Glutationa Transferase/metabolismo , Células HCT116 , Humanos , Imunoglobulinas/metabolismo , Camundongos , Dados de Sequência Molecular , Mutagênese , Plasmídeos/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície
2.
mBio ; 4(3): e00244-13, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23631918

RESUMO

UNLABELLED: Clostridium difficile is the leading cause of antibiotics-associated diarrhea and pseudomembranous colitis. Hypervirulent C. difficile strains produce the binary actin-ADP-ribosylating toxin CDT (C. difficile transferase), in addition to the Rho-glucosylating toxins A and B. We recently identified the lipolysis-stimulated lipoprotein receptor (LSR) as the host receptor that mediates uptake of CDT into target cells. Here we investigated in H1-HeLa cells, which ectopically express LSR, the influence of CDT on the plasma membrane distribution of the receptor. We found by fluorescence microscopy that the binding component of CDT (CDTb) induces clustering of LSR into subcompartments of the plasma membrane. Detergent extraction of cells treated with CDTb, followed by sucrose gradient fractionation, uncovered accumulation of LSR in detergent-resistant membranes (DRMs) that contained typical marker proteins of lipid rafts. Membrane cholesterol depletion with methyl-ß-cyclodextrin inhibited the association of LSR with DRMs upon addition of CDTb. The receptor-binding domain of CDTb also triggered LSR clustering into DRMs. CDTb-triggered clustering of LSR into DRMs could be confirmed in Caco-2 cells. Our data suggest that CDT forces its receptor to cluster into lipid rafts and that oligomerization of the B component might enhance but is not essential for this process. IMPORTANCE: C. difficile binary toxin CDT is a member of the iota-like, actin ADP-ribosylating toxin family. The mechanism that mediates endocytic uptake of these toxins still remains elusive. Previous studies highlighted the importance of lipid rafts for oligomerization of the binding component of these toxins and for cell entry. Recently, the host cell receptor for this toxin family, namely, the lipolysis-stimulated lipoprotein receptor (LSR), has been identified. Our study now demonstrates that the binding component of CDT (CDTb) induces clustering of LSR into lipid rafts. Importantly, LSR clustering is efficiently induced also by the receptor-binding domain of CDTb, suggesting that oligomerization of the B component of CDT is not the main trigger of this process. The current work extends our knowledge on the cooperative play between iota-like toxins and their receptor.


Assuntos
ADP Ribose Transferases/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Clostridioides difficile/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Receptores de Lipoproteínas/análise , Células CACO-2 , Análise Mutacional de DNA , Células HeLa , Humanos , Microscopia de Fluorescência , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA