Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pediatr Blood Cancer ; 69(8): e29482, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34889033

RESUMO

BACKGROUND: Advanced stages of pediatric alveolar rhabdomyosarcoma (RMA) are associated with an unfavorable outcome at established therapeutic strategies, accentuating the need for novel treatment options. Photodynamic therapy (PDT) with hypericin (HYP) has shown strong cytotoxic effects in two-dimensional (2D) cell culture. In order to more accurately mimic in vivo tissue architecture and better predict pharmaceutical response, the aim of this study was to establish a spheroid culture model by which PDT efficacy could be assessed in a three-dimensional (3D) context. MATERIALS AND METHODS: 3D multicellular tumor spheroids were generated using various scaffold-based and scaffold-free techniques. On two reproducible methods, HYP-PDT was performed varying spheroid sizes, photosensitizer concentrations, and illumination times. The ability for HYP uptake within the spheroid was analyzed assessing the substrate's autofluorescence. Antitumorigenic treatment effects were evaluated investigating cell viability, spheroid morphology, proliferative activity, and induction of apoptosis. RESULTS: Magnetic spheroid printing and orbital shaking methods were established as reproducible culturing systems producing uniform spheroids. Within assessed incubation times, HYP showed good penetration depth in spheroids containing 50,000 cells. PDT was causing metabolic and molecular impairment of RMA cells, resulting in viability decrease, reduction of cell proliferation, and induction of apoptosis. CONCLUSION: Assessing HYP-based PDT in a 3D culture model, we were able to gain an insight on how parameters like photosensitizer, oxygen, and light distribution contribute to the phototoxic effect. Compared to 2D cell culture, a higher treatment resistance was detected, which can be related to spheroid structure and mechanisms of intercellular communication, signal transduction, and gene expression.


Assuntos
Fotoquimioterapia , Rabdomiossarcoma Embrionário , Rabdomiossarcoma , Antracenos , Linhagem Celular Tumoral , Criança , Humanos , Perileno/análogos & derivados , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Rabdomiossarcoma/tratamento farmacológico
2.
Pediatr Blood Cancer ; 69(11): e29864, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35731577

RESUMO

BACKGROUND: Cytoreductive surgery (CRS) in combination with hyperthermic intraperitoneal chemotherapy (HIPEC) is an option in advanced peritoneal sarcomatosis. Nevertheless, CRS and HIPEC are not successful in all patients. An enhancement of HIPEC using photodynamic therapy (PDT) might be beneficial. Therefore, a combination of the photosensitizer hypericin (HYP) with HIPEC was evaluated in an animal model. PROCEDURE: An established HIPEC animal model for rhabdomyosarcoma (NOD/LtSz-scid IL2Rγnullmice, n = 80) was used. All groups received HYP (100 µg/200 µl) intraperitoneally with and without cisplatin-based (30 or 60 mg/m2 ) HIPEC (37°C or 42°C, for 60 minutes) (five groups, each n = 16). Peritoneal cancer index (PCI) was documented visually and by HYP-based photodynamic diagnosis (PDD). HYP-based PDT of the tumor was performed. Tissue samples were evaluated regarding proliferation (Ki-67) and apoptosis (TUNEL). RESULTS: HYP uptake was detected even in smallest tumor nodes (<1 mm) with improved tumor detection during PDD (PCI with PDD vs. PCI without PDD: 8.5 vs. 7, p < .001***). Apoptotic effects after PDT without HIPEC were limited to the tumor surface, whereas PDT after HIPEC (60 mg/m2 , 42°C) showed additional reduction of tumor proliferation in the top nine to 11 cell layers (50 µm). CONCLUSION: HYP as fluorescent photosensitizer offers an intraoperative diagnostic advantage detecting intraperitoneal tumor dissemination. The combination of HYP and cisplatin-based HIPEC was feasible in vivo, showing enhanced effects on tumor proliferation and apoptosis induction across the tumor surface. Further studies combining HYP and HIPEC will follow to establish a clinical application.


Assuntos
Hipertermia Induzida , Neoplasias Peritoneais , Rabdomiossarcoma Embrionário , Rabdomiossarcoma , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cisplatino/uso terapêutico , Terapia Combinada , Humanos , Quimioterapia Intraperitoneal Hipertérmica , Antígeno Ki-67 , Modelos Animais , Neoplasias Peritoneais/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma Embrionário/tratamento farmacológico , Taxa de Sobrevida
3.
Photodiagnosis Photodyn Ther ; 29: 101588, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31704507

RESUMO

BACKGROUND: Alveolar rhabdomyosarcoma (RMA) is a highly malignant soft tissue tumor in children with poor prognosis and failure of established therapies in advanced stages. Therefore, novel treatment options are required. Photodynamic therapy (PDT) has been found useful for the treatment of different tumor entities and might represent such a novel treatment option. A major limitation of PDT remains the restriction to superficial tumor cell layers as illumination with light is essential for the generation of reactive oxygen species. Current research focusses on the development of modified Hypericin (HYP)-based photosensitizers, as well as combining PDT and targeted internal radiotherapy with 131I, to generate an additive anti-tumor effect. METHODS: A standardized protocol for in vitro Hypericin-PDT was established in RMA cells. The anti-tumor properties of this photosensitizer were analyzed on molecular and metabolic levels. Changes in cell morphology were visualized using bright field-, fluorescence- and scanning-electron microscopy. Iodinated Hypericin derivatives with both radioactive and non-radioactive isotopes 131I/127I were employed to establish a targeted radionuclide therapy and investigate the potential of a combined treatment with PDT. RESULTS: In vitro photodynamic treatment with Hypericin showed a strong anti-tumor efficiency with favorable cellular uptake and compromised cancer cells on metabolic and molecular levels. Iodination of the photosensitizer did not impair the photosensitizer´s properties. Targeted radiotherapy with 131I-HYP led to distinct reductions of tumor viability. A simultaneously performed PDT leads to a reduction of cell viability that begins earlier in time. However, an additive enhancement of the cell viability was not observed in the selected dose range. CONCLUSION: In this in vitro study, we got a first insight of a possible potential of Hypericin for the treatment of pediatric soft tissue sarcoma. By coupling with radioiodine, we developed a novel approach for a combined anti-tumor treatment. The in vitro experiments lay the foundation for further in vivo experiments, which are needed to study the effects of a sequential administration of 131I-HYP and HYP.


Assuntos
Perileno/análogos & derivados , Fármacos Fotossensibilizantes/uso terapêutico , Rabdomiossarcoma Alveolar/tratamento farmacológico , Antracenos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Halogenação , Humanos , Perileno/administração & dosagem , Perileno/química , Perileno/uso terapêutico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA