RESUMO
Chronic liver diseases are worldwide on the rise. Due to the rapidly increasing incidence, in particular in Western countries, metabolic dysfunction-associated steatotic liver disease (MASLD) is gaining importance as the disease can develop into hepatocellular carcinoma. Lipid accumulation in hepatocytes has been identified as the characteristic structural change in MASLD development, but molecular mechanisms responsible for disease progression remained unresolved. Here, we uncover in primary hepatocytes from a preclinical model fed with a Western diet (WD) an increased basal MET phosphorylation and a strong downregulation of the PI3K-AKT pathway. Dynamic pathway modeling of hepatocyte growth factor (HGF) signal transduction combined with global proteomics identifies that an elevated basal MET phosphorylation rate is the main driver of altered signaling leading to increased proliferation of WD-hepatocytes. Model-adaptation to patient-derived hepatocytes reveal patient-specific variability in basal MET phosphorylation, which correlates with patient outcome after liver surgery. Thus, dysregulated basal MET phosphorylation could be an indicator for the health status of the liver and thereby inform on the risk of a patient to suffer from liver failure after surgery.
Assuntos
Carcinoma Hepatocelular , Fígado Gorduroso , Neoplasias Hepáticas , Humanos , Fosforilação , Fosfatidilinositol 3-Quinases/metabolismo , Hepatócitos/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Fígado Gorduroso/metabolismo , Neoplasias Hepáticas/patologiaRESUMO
BACKGROUND: Despite progress understanding the mechanisms underlying tumor spread, metastasis remains a clinical challenge. We identified the choline-producing glycerophosphodiesterase, EDI3 and reported its association with metastasis-free survival in endometrial cancer. We also observed that silencing EDI3 slowed cell migration and other cancer-relevant phenotypes in vitro. Recent work demonstrated high EDI3 expression in ER-HER2+ breast cancer compared to the other molecular subtypes. Silencing EDI3 in ER-HER2+ cells significantly reduced cell survival in vitro and decreased tumor growth in vivo. However, a role for EDI3 in tumor metastasis in this breast cancer subtype was not explored. Therefore, in the present work we investigate whether silencing EDI3 in ER-HER2+ breast cancer cell lines alters phenotypes linked to metastasis in vitro, and metastasis formation in vivo using mouse models of experimental metastasis. METHODS: To inducibly silence EDI3, luciferase-expressing HCC1954 cells were transduced with lentiviral particles containing shRNA oligos targeting EDI3 under the control of doxycycline. The effect on cell migration, adhesion, colony formation and anoikis was determined in vitro, and significant findings were confirmed in a second ER-HER2+ cell line, SUM190PT. Doxycycline-induced HCC1954-luc shEDI3 cells were injected into the tail vein or peritoneum of immunodeficient mice to generate lung and peritoneal metastases, respectively and monitored using non-invasive bioluminescence imaging. Metabolite levels in cells and tumor tissue were analyzed using targeted mass spectrometry and MALDI mass spectrometry imaging (MALDI-MSI), respectively. RESULTS: Inducibly silencing EDI3 reduced cell adhesion and colony formation, as well as increased susceptibility to anoikis in HCC1954-luc cells, which was confirmed in SUM190PT cells. No influence on cell migration was observed. Reduced luminescence was seen in lungs and peritoneum of mice injected with cells expressing less EDI3 after tail vein and intraperitoneal injection, respectively, indicative of reduced metastasis. Importantly, mice injected with EDI3-silenced cells survived longer. Closer analysis of the peritoneal organs revealed that silencing EDI3 had no effect on metastatic organotropism but instead reduced metastatic burden. Finally, metabolic analyses revealed significant changes in choline and glycerophospholipid metabolites in cells and in pancreatic metastases in vivo. CONCLUSIONS: Reduced metastasis upon silencing supports EDI3's potential as a treatment target in metastasizing ER-HER2+ breast cancer.
Assuntos
Neoplasias da Mama , Fosfolipases , Receptor ErbB-2 , Receptores de Estrogênio , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metástase Neoplásica , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Receptores de Estrogênio/metabolismo , Carga Tumoral , Fosfolipases/genética , Fosfolipases/metabolismoRESUMO
BACKGROUND & AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of chronic liver disease. Owing to limited available treatment options, novel pre-clinical models for target selection and drug validation are warranted. We have established and extensively characterized a primary human steatotic hepatocyte in vitro model system that could guide the development of treatment strategies for MASLD. METHODS: Cryopreserved primary human hepatocytes from five donors varying in sex and ethnicity were cultured with free fatty acids in a 3D collagen sandwich for 7 days and the development of MASLD was followed by assessing classical hepatocellular functions. As proof of concept, the effects of the drug firsocostat (GS-0976) on in vitro MASLD phenotypes were evaluated. RESULTS: Incubation with free fatty acids induced steatosis, insulin resistance, mitochondrial dysfunction, inflammation, and alterations in prominent human gene signatures similar to patients with MASLD, indicating the recapitulation of human MASLD in this system. The application of firsocostat rescued clinically observed fatty liver disease pathologies, highlighting the ability of the in vitro system to test the efficacy and potentially characterize the mode of action of drug candidates. CONCLUSIONS: Altogether, our human MASLD in vitro model system could guide the development and validation of novel targets and drugs for the treatment of MASLD. IMPACT AND IMPLICATIONS: Due to low drug efficacy and high toxicity, clinical treatment options for metabolic dysfunction-associated steatotic liver disease (MASLD) are currently limited. To facilitate earlier stop-go decisions in drug development, we have established a primary human steatotic hepatocyte in vitro model. As the model recapitulates clinically relevant MASLD characteristics at high phenotypic resolution, it can serve as a pre-screening platform and guide target identification and validation in MASLD therapy.
RESUMO
INTRODUCTION: WNT1-inducible signalling pathway protein 1 (WISP1) promotes progression of several tumor entities often correlating with worse prognosis. Here its expression regulation and role in the progression of chronic liver diseases (CLD) was investigated. METHODS: WISP1 expression was analyzed in human HCC datasets, in biopsies and serum samples and an HCC patient tissue microarray (TMA) including correlation to clinicopathological parameters. Spatial distribution of WISP1 expression was determined using RNAscope analysis. Regulation of WISP1 expression was investigated in cytokine-stimulated primary mouse hepatocytes (PMH) by array analysis and qRT-PCR. Outcome of WISP1 stimulation was analyzed by IncuCyte S3-live cell imaging, qRT-PCR, and immunoblotting in murine AML12 cells. RESULTS: In a TMA, high WISP1 expression was positively correlated with early HCC stages and male sex. Highest WISP1 expression levels were detected in patients with cirrhosis as compared to healthy individuals, patients with early fibrosis, and non-cirrhotic HCC in liver biopsies, expression datasets and serum samples. WISP1 transcripts were predominantly detected in hepatocytes of cirrhotic rather than tumorous liver tissue. High WISP1 expression was associated with better survival. In PMH, AML12 and HepaRG, WISP1 was identified as a specific TGF-ß1 target gene. Accordingly, expression levels of both cytokines positively correlated in human HCC patient samples. WISP1-stimulation induced the expression of Bcl-xL, PCNA and p21 in AML12 cells. CONCLUSIONS: WISP1 expression is induced by TGF-ß1 in hepatocytes and is associated with cirrhotic liver disease. We propose a crucial role of WISP1 in balancing pro- and anti-tumorigenic effects during premalignant stages of CLD.
Assuntos
Proteínas de Sinalização Intercelular CCN , Carcinogênese , Regulação Neoplásica da Expressão Gênica , Cirrose Hepática , Neoplasias Hepáticas , Microambiente Tumoral , Proteínas de Sinalização Intercelular CCN/genética , Proteínas de Sinalização Intercelular CCN/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Perfilação da Expressão Gênica , Análise de Sobrevida , Humanos , Masculino , Feminino , Animais , Camundongos , Hepatócitos/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Apoptose/genética , Proliferação de Células/genética , Pontos de Checagem do Ciclo Celular/genética , Microambiente Tumoral/genética , Carcinogênese/genéticaRESUMO
Acetaminophen (APAP) is known to cause a breach of the blood-bile barrier in mice that, via a mechanism called futile bile acid (BA) cycling, increases BA concentrations in hepatocytes above cytotoxic thresholds. Here, we compared this mechanism in mice and rats, because both species differ massively in their susceptibility to APAP and compared the results to available human data. Dose and time-dependent APAP experiments were performed in male C57BL6/N mice and Wistar rats. The time course of BA concentrations in liver tissue and in blood was analyzed by MALDI-MSI and LC-MS/MS. APAP and its derivatives were measured in the blood by LC-MS. APAP-induced liver damage was analyzed by histopathology, immunohistochemistry, and by clinical chemistry. In mice, a transient increase of BA in blood and in peri-central hepatocytes preceded hepatocyte death. The BA increase coincided with oxidative stress in liver tissue and a compromised morphology of bile canaliculi and immunohistochemically visualized tight junction proteins. Rats showed a reduced metabolic activation of APAP compared to mice. However, even at very high doses that caused cell death of hepatocytes, no increase of BA concentrations was observed neither in liver tissue nor in the blood. Correspondingly, no oxidative stress was detectable, and the morphology of bile canaliculi and tight junction proteins remained unaltered. In conclusion, different mechanisms cause cell death in rats and mice, whereby oxidative stress and a breach of the blood-bile barrier are seen only in mice. Since transient cholestasis also occurs in human patients with APAP overdose, mice are a clinically relevant species to study APAP hepatotoxicity but not rats.
Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Ratos , Humanos , Masculino , Animais , Acetaminofen/toxicidade , Acetaminofen/metabolismo , Bile/metabolismo , Cromatografia Líquida , Doença Hepática Induzida por Substâncias e Drogas/patologia , Ratos Wistar , Espectrometria de Massas em Tandem , Fígado/metabolismo , Hepatócitos/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Junções Íntimas/metabolismoRESUMO
Large interspecies differences between rats and mice concerning the hepatotoxicity and carcinogenicity of aflatoxin B1 (AFB1) are known, with mice being more resistant. However, a comprehensive interspecies comparison including subcellular liver tissue compartments has not yet been performed. In this study, we performed spatio-temporal intravital analysis of AFB1 kinetics in the livers of anesthetized mice and rats. This was supported by time-dependent analysis of the parent compound as well as metabolites and adducts in blood, urine, and bile of both species by HPLC-MS/MS. The integrated data from intravital imaging and HPLC-MS/MS analysis revealed major interspecies differences between rats and mice: (1) AFB1-associated fluorescence persisted much longer in the nuclei of rat than mouse hepatocytes; (2) in the sinusoidal blood, AFB1-associated fluorescence was rapidly cleared in mice, while a time-dependent increase was observed in rats in the first three hours after injection followed by a plateau that lasted until the end of the observation period of six hours; (3) this coincided with a far stronger increase of AFB1-lysine adducts in the blood of rats compared to mice; (4) the AFB1-guanine adduct was detected at much higher concentrations in bile and urine of rats than mice. In both species, the AFB1-glutathione conjugate was efficiently excreted via bile, where it reached concentrations at least three orders of magnitude higher compared to blood. In conclusion, major differences between mice and rats were observed, concerning the nuclear persistence, formation of AFB1-lysine adducts, and the AFB1-guanine adducts.
Assuntos
Aflatoxinas , Ratos , Camundongos , Animais , Aflatoxinas/metabolismo , Aflatoxinas/toxicidade , Lisina/metabolismo , Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Fígado/metabolismo , Aflatoxina B1/toxicidade , Guanina/metabolismo , Microscopia IntravitalRESUMO
Dietary exposure to N-nitrosamines has recently been assessed by the European Food Safety Authority (EFSA) to result in margins of exposure that are conceived to indicate concern with respect to human health risk. However, evidence from more than half a century of international research shows that N-nitroso compounds (NOC) can also be formed endogenously. In this commentary of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG), the complex metabolic and physiological biokinetics network of nitrate, nitrite and reactive nitrogen species is discussed with emphasis on its influence on endogenous NOC formation. Pioneering approaches to monitor endogenous NOC have been based on steady-state levels of N-nitrosodimethylamine (NDMA) in human blood and on DNA adduct levels in blood cells. Further NOC have not been considered yet to a comparable extent, although their generation from endogenous or exogenous precursors is to be expected. The evidence available to date indicates that endogenous NDMA exposure could exceed dietary exposure by about 2-3 orders of magnitude. These findings require consolidation by refined toxicokinetics and DNA adduct monitoring data to achieve a credible and comprehensive human health risk assessment.
Assuntos
Adutos de DNA , Exposição Dietética , Dimetilnitrosamina , Nitrosaminas , Humanos , Medição de Risco , Nitrosaminas/toxicidade , Nitrosaminas/farmacocinética , Exposição Dietética/efeitos adversos , Dimetilnitrosamina/toxicidade , Contaminação de Alimentos , Inocuidade dos Alimentos , Animais , Nitritos/toxicidade , Nitratos/toxicidade , Nitratos/farmacocinética , Espécies Reativas de Nitrogênio/metabolismoRESUMO
Since 2006, the responsible regulatory bodies have proposed five health-based guidance values (HBGV) for bisphenol A (BPA) that differ by a factor of 250,000. This range of HBGVs covers a considerable part of the range from highly toxic to relatively non-toxic substances. As such heterogeneity of regulatory opinions is a challenge not only for scientific risk assessment but also for all stakeholders, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) analyzed the reasons for the current discrepancy and used this example to suggest improvements for the process of HBGV recommendations. A key aspect for deriving a HBGV is the selection of appropriate studies that allow the identification of a point of departure (PoD) for risk assessment. In the case of BPA, the HBGV derived in the 2023 EFSA assessment was based on a study that reported an increase of Th17 cells in mice with a benchmark dose lower bound (BMDL40) of 0.53 µg/kg bw/day. However, this study does not comply with several criteria that are important for scientific risk assessment: (1) the selected end-point, Th17 cell frequency in the spleen of mice, is insufficiently understood with respect to health outcomes. (2) It is unclear, by which mechanism BPA may cause an increase in Th17 cell frequency. (3) It is unknown, if an increase of Th17 cell frequency in rodents is comparably observed in humans. (4) Toxicokinetics were not addressed. (5) Neither the raw data nor the experimental protocols are available. A further particularly important criterion (6) is independent data confirmation which is not available in the present case. Previous studies using other readouts did not observe immune-related adverse effects such as inflammation, even at doses orders of magnitude higher than in the Th17 cell-based study. The SKLM not only provides here key criteria for the use of such studies, but also suggests that the use of such a "checklist" requires a careful and comprehensive scientific judgement of each item. It is concluded that the Th17 cell-based study data do not represent an adequate basis for risk assessment of BPA.
Assuntos
Compostos Benzidrílicos , Fenóis , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Medição de Risco/métodos , Animais , Humanos , Camundongos , Relação Dose-Resposta a Droga , Guias como AssuntoRESUMO
BACKGROUND AND AIMS: Lipopolysaccharide (LPS) clearance is delayed in cholestatic liver diseases. While compromised clearance by Kupffer cells (KCs) is involved, the role of LPS uptake into hepatocytes and canalicular excretion remains unclear. APPROACH AND RESULTS: Wild-type (WT) and bile salt export pump (Bsep) knockout (KO) mice were challenged i.p. with LPS. Liver injury was assessed by serum biochemistry, histology, molecular inflammation markers, and immune cell infiltration. LPS concentrations were determined in liver tissue and bile. Subcellular kinetics of fluorescently labeled LPS was visualized by intravital two-photon microscopy, and the findings in Bsep KO mice were compared to common bile duct-ligated (BDL) and multidrug resistance protein 2 (Mdr2) KO mice. Changes in gut microbiota composition were evaluated by 16S ribosomal RNA gene amplicon sequencing analysis. Bsep KO mice developed more pronounced LPS-induced liver injury and inflammatory signaling, with subsequently enhanced production of proinflammatory cytokines and aggravated hepatic immune cell infiltration. After LPS administration, its concentrations were higher in liver but lower in bile of Bsep KO compared to WT mice. Intravital imaging of LPS showed a delayed clearance from sinusoidal blood with a basolateral uptake block into hepatocytes and reduced canalicular secretion. Moreover, LPS uptake into KCs was reduced. Similar findings with respect to hepatic LPS clearance were obtained in BDL and Mdr2 KO mice. Pretreatment with the microtubule inhibitor colchicine inhibited biliary excretion of LPS in WT mice, indicating that LPS clearance is microtubule-dependent. Microbiota analysis showed no change of the gut microbiome between WT and Bsep KO mice at baseline but major changes upon LPS challenge in WT mice. CONCLUSIONS: Absence of Bsep and cholestasis in general impair LPS clearance by a basolateral uptake block into hepatocytes and consequently less secretion into canaliculi. Impaired LPS removal aggravates hepatic inflammation in cholestasis.
Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Colestase , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Colestase/patologia , Endotoxinas , Inflamação/metabolismo , Cinética , Lipopolissacarídeos/metabolismo , Fígado/patologia , Camundongos , Camundongos KnockoutRESUMO
BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is a major health burden associated with the metabolic syndrome leading to liver fibrosis, cirrhosis and ultimately liver cancer. In humans, the PNPLA3 I148M polymorphism of the phospholipase patatin-like phospholipid domain containing protein 3 (PNPLA3) has a well-documented impact on metabolic liver disease. In this study, we used a mouse model mimicking the human PNPLA3 I148M polymorphism in a long-term high fat diet (HFD) experiment to better define its role for NAFLD progression. METHODS: Male mice bearing wild-type Pnpla3 (Pnpla3WT ), or the human polymorphism PNPLA3 I148M (Pnpla3148M/M ) were subjected to HFD feeding for 24 and 52 weeks. Further analysis concerning basic phenotype, inflammation, proliferation and cell death, fibrosis and microbiota were performed in each time point. RESULTS: After 52 weeks HFD Pnpla3148M/M animals had more liver fibrosis, enhanced numbers of inflammatory cells as well as increased Kupffer cell activity. Increased hepatocyte cell turnover and ductular proliferation were evident in HFD Pnpla3148M/M livers. Microbiome diversity was decreased after HFD feeding, changes were influenced by HFD feeding (36%) and the PNPLA3 I148M genotype (12%). Pnpla3148M/M mice had more faecal bile acids. RNA-sequencing of liver tissue defined an HFD-associated signature, and a Pnpla3148M/M specific pattern, which suggests Kupffer cell and monocytes-derived macrophages as significant drivers of liver disease progression in Pnpla3148M/M animals. CONCLUSION: With long-term HFD feeding, mice with the PNPLA3 I148M genotype show exacerbated NAFLD. This finding is linked to PNPLA3 I148M-specific changes in microbiota composition and liver gene expression showing a stronger inflammatory response leading to enhanced liver fibrosis progression.
Assuntos
Doenças Metabólicas , Hepatopatia Gordurosa não Alcoólica , Animais , Masculino , Camundongos , Aciltransferases/genética , Dieta , Predisposição Genética para Doença , Genótipo , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfolipases A2 Independentes de Cálcio/genética , Fosfolipases A2 Independentes de Cálcio/metabolismoRESUMO
The analysis of dose-response, concentration-response, and time-response relationships is a central component of toxicological research. A major decision with respect to the statistical analysis is whether to consider only the actually measured concentrations or to assume an underlying (parametric) model that allows extrapolation. Recent research suggests the application of modelling approaches for various types of toxicological assays. However, there is a discrepancy between the state of the art in statistical methodological research and published analyses in the toxicological literature. The extent of this gap is quantified in this work using an extensive literature review that considered all dose-response analyses published in three major toxicological journals in 2021. The aspects of the review include biological considerations (type of assay and of exposure), statistical design considerations (number of measured conditions, design, and sample sizes), and statistical analysis considerations (display, analysis goal, statistical testing or modelling method, and alert concentration). Based on the results of this review and the critical assessment of three selected issues in the context of statistical research, concrete guidance for planning, execution, and analysis of dose-response studies from a statistical viewpoint is proposed.
RESUMO
PFASs are defined as substances that contain at least one fully fluorinated methyl (CF3-) or methylene (-CF2-) carbon atom. The excellent technical properties of members of the PFAS group have led to their use in a wide range of applications. The substance group comprises more than 10,000 individual compounds. A variety of adverse effects has been described for single substances. For the majority of the PFASs, neither toxicokinetic data nor effect data is available. Hence, because of the small number of PFASs for which a full toxicological profile is available, grouping based on the existing data is not feasible. A critical problem of PFASs and their degradation products is the very high persistence, which clearly fulfils the criterion for the substance property Very Persistent (vP) according to Annex XIII of the REACH Regulation. Because of this property the European Commission is planning to take action. Defining suitable subgroups appears to be a scientifically based approach. However, to reach this goal, large data gaps would have to be closed which would take up to centuries, a time-frame, which is not defendable with respect to potential irreversible harm. Because of the time pressure resulting from the potential irreversible harm, the precautionary principle has been selected as an appropriate tool to handle PFASs and in the restriction proposal PFASs are treated as one group. This approach is justified in the view of the advisory committee of the German Society for Toxicology. ECHA's proposal received a lot of attention in the public. However, communication so far has obviously led to the misunderstanding of a proven health hazard for all PFASs. Communication should explain the justification of the broad inclusion of substances as being based on the precautionary principle. Data gaps versus current knowledge need to be clearly communicated; communication should also include the possibility for derogation of essential use. It should address the issue of suitable substitutes to avoid unintended health consequences; and it should mention that existing persistent environmental contamination calls for developing innovation in remediation techniques.
Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/toxicidade , Poluição AmbientalRESUMO
Retrorsine is a hepatotoxic pyrrolizidine alkaloid (PA) found in herbal supplements and medicines, food and livestock feed. Dose-response studies enabling the derivation of a point of departure including a benchmark dose for risk assessment of retrorsine in humans and animals are not available. Addressing this need, a physiologically based toxicokinetic (PBTK) model of retrorsine was developed for mouse and rat. Comprehensive characterization of retrorsine toxicokinetics revealed: both the fraction absorbed from the intestine (78%) and the fraction unbound in plasma (60%) are high, hepatic membrane permeation is dominated by active uptake and not by passive diffusion, liver metabolic clearance is 4-fold higher in rat compared to mouse and renal excretion contributes to 20% of the total clearance. The PBTK model was calibrated with kinetic data from available mouse and rat studies using maximum likelihood estimation. PBTK model evaluation showed convincing goodness-of-fit for hepatic retrorsine and retrorsine-derived DNA adducts. Furthermore, the developed model allowed to translate in vitro liver toxicity data of retrorsine to in vivo dose-response data. Resulting benchmark dose confidence intervals (mg/kg bodyweight) are 24.1-88.5 in mice and 79.9-104 in rats for acute liver toxicity after oral retrorsine intake. As the PBTK model was built to enable extrapolation to different species and other PA congeners, this integrative framework constitutes a flexible tool to address gaps in the risk assessment of PA.
Assuntos
Alcaloides de Pirrolizidina , Humanos , Ratos , Camundongos , Animais , Alcaloides de Pirrolizidina/metabolismo , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Adutos de DNA/metabolismoRESUMO
Aflatoxin B1 (AFB1) is a highly hepatotoxic and carcinogenic mycotoxin produced by Aspergillus species. The compound is mainly metabolized in the liver and its metabolism varies between species. The present study quantified relevant AFB1- metabolites formed by mouse, rat, and human primary hepatocytes after treatment with 1 µM and 10 µM AFB1. The use of liquid chromatographic separation coupled with tandem mass spectrometric detection enabled the selective and sensitive determination of phase I and phase II metabolites of AFB1 over incubation times of up to 24 h. The binding of AFB1 to macromolecules was also considered. The fastest metabolism of AFB1 was observed in mouse hepatocytes which formed aflatoxin P1 as a major metabolite and also its glucuronidated form, while AFP1 occurred only in traces in the other species. Aflatoxin M1 was formed in all species and was, together with aflatoxin Q1 and aflatoxicol, the main metabolite in human cells. Effective epoxidation led to high amounts of DNA adducts already 30 min post-treatment, especially in rat hepatocytes. Lower levels of DNA adducts and fast DNA repair were found in mouse hepatocytes. Also, protein adducts arising from reactive intermediates were formed rapidly in all three species. Detoxification via glutathione conjugation and subsequent formation of the N-acetylcysteine derivative appeared to be similar in mice and in rats and strongly differed from human hepatocytes which did not form these metabolites at all. The use of qualitative reference material of a multitude of metabolites and the comparison of hepatocyte metabolism in three species using advanced methods enabled considerations on toxification and detoxification mechanisms of AFB1. In addition to glutathione conjugation, phase I metabolism is strongly involved in the detoxification of AFB1.
Assuntos
Aflatoxina B1 , Aflatoxinas , Humanos , Ratos , Camundongos , Animais , Aflatoxina B1/toxicidade , Cromatografia Líquida de Alta Pressão , Adutos de DNA/metabolismo , Espectrometria de Massas em Tandem , DNA , Aflatoxinas/farmacologia , Aflatoxinas/toxicidade , Fígado , Hepatócitos/metabolismo , Glutationa/metabolismoRESUMO
To transfer toxicological findings from model systems, e.g. animals, to humans, standardized safety factors are applied to account for intra-species and inter-species variabilities. An alternative approach would be to measure and model the actual compound-specific uncertainties. This biological concept assumes that all observed toxicities depend not only on the exposure situation (environment = E), but also on the genetic (G) background of the model (G × E). As a quantitative discipline, toxicology needs to move beyond merely qualitative G × E concepts. Research programs are required that determine the major biological variabilities affecting toxicity and categorize their relative weights and contributions. In a complementary approach, detailed case studies need to explore the role of genetic backgrounds in the adverse effects of defined chemicals. In addition, current understanding of the selection and propagation of adverse outcome pathways (AOP) in different biological environments is very limited. To improve understanding, a particular focus is required on modulatory and counter-regulatory steps. For quantitative approaches to address uncertainties, the concept of "genetic" influence needs a more precise definition. What is usually meant by this term in the context of G × E are the protein functions encoded by the genes. Besides the gene sequence, the regulation of the gene expression and function should also be accounted for. The widened concept of past and present "gene expression" influences is summarized here as Ge. Also, the concept of "environment" needs some re-consideration in situations where exposure timing (Et) is pivotal: prolonged or repeated exposure to the insult (chemical, physical, life style) affects Ge. This implies that it changes the model system. The interaction of Ge with Et might be denoted as Ge × Et. We provide here general explanations and specific examples for this concept and show how it could be applied in the context of New Approach Methodologies (NAM).
Assuntos
Rotas de Resultados Adversos , Humanos , Animais , Incerteza , Modelos BiológicosRESUMO
Exposure to multiple substances is a challenge for risk evaluation. Currently, there is an ongoing debate if generic "mixture assessment/allocation factors" (MAF) should be introduced to increase public health protection. Here, we explore concepts of mixture toxicity and the potential influence of mixture regulation concepts for human health protection. Based on this analysis, we provide recommendations for research and risk assessment. One of the concepts of mixture toxicity is additivity. Substances may act additively by affecting the same molecular mechanism within a common target cell, for example, dioxin-like substances. In a second concept, an "enhancer substance" may act by increasing the target site concentration and aggravating the adverse effect of a "driver substance". For both concepts, adequate risk management of individual substances can reliably prevent adverse effects to humans. Furthermore, we discuss the hypothesis that the large number of substances to which humans are exposed at very low and individually safe doses may interact to cause adverse effects. This commentary identifies knowledge gaps, such as the lack of a comprehensive overview of substances regulated under different silos, including food, environmentally and occupationally relevant substances, the absence of reliable human exposure data and the missing accessibility of ratios of current human exposure to threshold values, which are considered safe for individual substances. Moreover, a comprehensive overview of the molecular mechanisms and most susceptible target cells is required. We conclude that, currently, there is no scientific evidence supporting the need for a generic MAF. Rather, we recommend taking more specific measures, which focus on compounds with relatively small ratios between human exposure and doses, at which adverse effects can be expected.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Dibenzodioxinas Policloradas , Humanos , Alimentos , Saúde Pública , Medição de RiscoRESUMO
OBJECTIVE: Demographic changes encompass societies to maintain the work ability (WA) of aging workforces. The present study explored the relationship between modifiable lifestyle factors, cognitive functions, and their influence on WA, using a multi-group structural equation approach. METHOD: Cross-sectional data from 247 middle-aged and 236 older employees from the Dortmund Vital Study were included in this analysis. We proposed a model with three exogenous variables (Physical Fitness, Cognitive Functions, and Social Life), and with WA as the endogenous variable. WA was measured with the Work Ability Index (WAI), which considers job demands and individual physical and mental resources. Multi-group analyses were based on the principles of invariance testing and conducted using robust estimation methods. RESULTS: Results revealed that Social Life outside work had significant positive effects on WA in both, middle-aged and older adults. Physical Fitness had a significant effect on WA only in middle-aged adult, and Cognitive Functions had no significant influence on WA in either group. In older adults, Physical Fitness correlated with Cognitive Functions, whereas in middle-aged adults, Cognitive Functions marginally correlated with Social Life. CONCLUSIONS: Our results underline the importance of an active social life outside the workplace for WA, regardless of the employees' age. The influence of Physical Fitness on WA changes with increasing age, indicating the necessity to have a differentiated view of age effects and interacting influencing factors. Our research contributes to the knowledge of how WA could be most effectively promoted in different age groups. CLINICALTRIALS: gov NCT05155397; https://clinicaltrials.gov/ct2/show/NCT05155397 .
Assuntos
Aptidão Física , Avaliação da Capacidade de Trabalho , Pessoa de Meia-Idade , Humanos , Idoso , Estudos Transversais , Cognição , Local de Trabalho/psicologiaRESUMO
Liver fibrosis interferes with normal liver function and facilitates hepatocellular carcinoma (HCC) development, representing a major threat to human health. Here, we present a comprehensive perspective of microRNA (miRNA) function on targeting the fibrotic microenvironment. Starting from a murine HCC model, we identify a miRNA network composed of 8 miRNA hubs and 54 target genes. We show that let-7, miR-30, miR-29c, miR-335, and miR-338 (collectively termed antifibrotic microRNAs [AF-miRNAs]) down-regulate key structural, signaling, and remodeling components of the extracellular matrix. During fibrogenic transition, these miRNAs are transcriptionally regulated by the transcription factor Pparγ and thus we identify a role of Pparγ as regulator of a functionally related class of AF-miRNAs. The miRNA network is active in human HCC, breast, and lung carcinomas, as well as in 2 independent mouse liver fibrosis models. Therefore, we identify a miRNA:mRNA network that contributes to formation of fibrosis in tumorous and nontumorous organs of mice and humans.
Assuntos
Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Cirrose Hepática/patologia , Neoplasias Hepáticas/genética , MicroRNAs/genética , PPAR gama/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Hepatocelular/patologia , Ilhas de CpG/genética , Metilação de DNA , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Epigênese Genética , Matriz Extracelular/patologia , Feminino , Células Estreladas do Fígado/patologia , Humanos , Fígado/citologia , Fígado/patologia , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Cultura Primária de Células , Regiões Promotoras Genéticas/genética , RNA-Seq , Microambiente Tumoral/genéticaRESUMO
BACKGROUND & AIMS: Pluripotent stem cell (PSC)-derived hepatocyte-like cells (HLC) have enormous potential as a replacement for primary hepatocytes in drug screening, toxicology and cell replacement therapy, but their genome-wide expression patterns differ strongly from primary human hepatocytes (PHH). METHODS: We differentiated human induced pluripotent stem cells (hiPSC) via definitive endoderm to HLC and characterized the cells by single-cell and bulk RNA-seq, with complementary epigenetic analyses. We then compared HLC to PHH and publicly available data on human fetal hepatocytes (FH) ex vivo; we performed bioinformatics-guided interventions to improve HLC differentiation via lentiviral transduction of the nuclear receptor FXR and agonist exposure. RESULTS: Single-cell RNA-seq revealed that transcriptomes of individual HLC display a hybrid state, where hepatocyte-associated genes are expressed in concert with genes that are not expressed in PHH - mostly intestinal genes - within the same cell. Bulk-level overrepresentation analysis, as well as regulon analysis at the single-cell level, identified sets of regulatory factors discriminating HLC, FH, and PHH, hinting at a central role for the nuclear receptor FXR in the functional maturation of HLC. Combined FXR expression plus agonist exposure enhanced the expression of hepatocyte-associated genes and increased the ability of bile canalicular secretion as well as lipid droplet formation, thereby increasing HLCs' similarity to PHH. The undesired non-liver gene expression was reproducibly decreased, although only by a moderate degree. CONCLUSION: In contrast to physiological hepatocyte precursor cells and mature hepatocytes, HLC co-express liver and hybrid genes in the same cell. Targeted modification of the FXR gene regulatory network improves their differentiation by suppressing intestinal traits whilst inducing hepatocyte features. LAY SUMMARY: Generation of human hepatocytes from stem cells represents an active research field but its success is hampered by the fact that the stem cell-derived 'hepatocytes' still show major differences to hepatocytes obtained from a liver. Here, we identified an important reason for the difference, specifically that the stem cell-derived 'hepatocyte' represents a hybrid cell with features of hepatocytes and intestinal cells. We show that a specific protein (FXR) suppresses intestinal and induces liver features, thus bringing the stem cell-derived cells closer to hepatocytes derived from human livers.
Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Hepatócitos/metabolismo , Humanos , IntestinosRESUMO
BACKGROUND & AIMS: Acetaminophen (APAP) overdose remains a frequent cause of acute liver failure, which is generally accompanied by increased levels of serum bile acids (BAs). However, the pathophysiological role of BAs remains elusive. Herein, we investigated the role of BAs in APAP-induced hepatotoxicity. METHODS: We performed intravital imaging to investigate BA transport in mice, quantified endogenous BA concentrations in the serum of mice and patients with APAP overdose, analyzed liver tissue and bile by mass spectrometry and MALDI-mass spectrometry imaging, assessed the integrity of the blood-bile barrier and the role of oxidative stress by immunostaining of tight junction proteins and intravital imaging of fluorescent markers, identified the intracellular cytotoxic concentrations of BAs, and performed interventions to block BA uptake from blood into hepatocytes. RESULTS: Prior to the onset of cell death, APAP overdose causes massive oxidative stress in the pericentral lobular zone, which coincided with a breach of the blood-bile barrier. Consequently, BAs leak from the bile canaliculi into the sinusoidal blood, which is then followed by their uptake into hepatocytes via the basolateral membrane, their secretion into canaliculi and repeated cycling. This, what we termed 'futile cycling' of BAs, led to increased intracellular BA concentrations that were high enough to cause hepatocyte death. Importantly, however, the interruption of BA re-uptake by pharmacological NTCP blockage using Myrcludex B and Oatp knockout strongly reduced APAP-induced hepatotoxicity. CONCLUSIONS: APAP overdose induces a breach of the blood-bile barrier which leads to futile BA cycling that causes hepatocyte death. Prevention of BA cycling may represent a therapeutic option after APAP intoxication. LAY SUMMARY: Only one drug, N-acetylcysteine, is approved for the treatment of acetaminophen overdose and it is only effective when given within â¼8 hours after ingestion. We identified a mechanism by which acetaminophen overdose causes an increase in bile acid concentrations (to above toxic thresholds) in hepatocytes. Blocking this mechanism prevented acetaminophen-induced hepatotoxicity in mice and evidence from patients suggests that this therapy may be effective for longer periods after ingestion compared to N-acetylcysteine.