Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 25(3): 869-884, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30570807

RESUMO

Future changes in climate are widely anticipated to increase fire frequency, particularly in boreal forests where extreme warming is expected to occur. Feedbacks between vegetation and fire may modify the direct effects of warming on fire activity and shape ecological responses to changing fire frequency. We investigate these interactions using extensive field data from the Boreal Shield of Saskatchewan, Canada, a region where >40% of the forest has burned in the past 30 years. We use geospatial and field data to assess the resistance and resilience of eight common vegetation states to frequent fire by quantifying the occurrence of short-interval fires and their effect on recovery to a similar vegetation state. These empirical relationships are combined with data from published literature to parameterize a spatially explicit, state-and-transition simulation model of fire and forest succession. We use this model to ask if and how: (a) feedbacks between vegetation and wildfire may modify fire activity on the landscape, and (b) more frequent fire may affect landscape forest composition and age structure. Both field and GIS data suggest the probability of fire is low in the initial decades after fire, supporting the hypothesis that fuel accumulation may exert a negative feedback on fire frequency. Field observations of pre- and postfire composition indicate that switches in forest state are more likely in conifer stands that burn at a young age, supporting the hypothesis that resilience is lower in immature stands. Stands dominated by deciduous trees or jack pine were generally resilient to fire, while mixed conifer and well-drained spruce forests were less resilient. However, simulation modeling suggests increased fire activity may result in large changes in forest age structure and composition, despite the feedbacks between vegetation-fire likely to occur with increased fire activity.


Assuntos
Taiga , Traqueófitas/parasitologia , Incêndios Florestais , Mudança Climática , Monitoramento Ambiental , Modelos Teóricos , Saskatchewan , Especificidade da Espécie , Fatores de Tempo , Traqueófitas/classificação , Traqueófitas/crescimento & desenvolvimento
2.
Ecol Appl ; 16(5): 1730-43, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17069367

RESUMO

Caribou are an integral component of high-latitude ecosystems and represent a major subsistence food source for many northern people. The availability and quality of winter habitat is critical to sustain these caribou populations. Caribou commonly use older spruce woodlands with adequate terrestrial lichen, a preferred winter forage, in the understory. Changes in climate and fire regime pose a significant threat to the long-term sustainability of this important winter habitat. Computer simulations performed with a spatially explicit vegetation succession model (ALFRESCO) indicate that changes in the frequency and extent of fire in interior Alaska may substantially impact the abundance and quality of winter habitat for caribou. We modeled four different fire scenarios and tracked the frequency, extent, and spatial distribution of the simulated fires and associated changes to vegetation composition and distribution. Our results suggest that shorter fire frequencies (i.e., less time between recurring fires) on the winter range of the Nelchina caribou herd in eastern interior Alaska will result in large decreases of available winter habitat, relative to that currently available, in both the short and long term. A 30% shortening of the fire frequency resulted in a 3.5-fold increase in the area burned annually and an associated 41% decrease in the amount of spruce-lichen forest found on the landscape. More importantly, simulations with more frequent fires produced a relatively immature forest age structure, compared to that which currently exists, with few stands older than 100 years. This age structure is at the lower limits of stand age classes preferred by caribou from the Nelchina herd. Projected changes in fire regime due to climate warming and/or additional prescribed burning could substantially alter the winter habitat of caribou in interior Alaska and lead to changes in winter range use and/or population dynamics.


Assuntos
Simulação por Computador , Ecossistema , Incêndios , Modelos Biológicos , Rena/fisiologia , Estações do Ano , Alaska , Animais , Conservação dos Recursos Naturais , Plantas
3.
PLoS One ; 8(12): e82903, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24386125

RESUMO

Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2 °C in 1 m(2) plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes.


Assuntos
Mudança Climática , Solo , Temperatura , Fontes Geradoras de Energia , Projetos de Pesquisa , Yukon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA