Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Environ Sci Technol ; 51(3): 1654-1661, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28056169

RESUMO

Rare earth elements (REEs) have become increasingly important in modern day technologies. Unfortunately, their recycling is currently limited, and the conventional technologies for their extraction and purification are exceedingly energy and chemical intensive. New sustainable technologies for REE extraction from both primary and secondary resources would be extremely beneficial. This research investigated a two-stage recovery strategy focused on the recovery of neodymium (Nd) and lanthanum (La) from monazite ore that combines microbially based leaching (using citric acid and spent fungal supernatant) with electrochemical extraction. Pretreating the phosphate-based monazite rock (via roasting) dramatically increased the microbial REE leaching efficiency. Batch experiments demonstrated the effective and continued leaching of REEs by recycled citric acid, with up to 392 mg of Nd L-1 and 281 mg of La L-1 leached during seven consecutive 24 h cycles. Neodymium was further extracted in the catholyte of a three-compartment electrochemical system, with up to 880 mg of Nd L-1 achieved within 4 days (at 40 A m-2). Meanwhile, the radioactive element thorium and counterions phosphate and citrate were separated effectively from the REEs in the anolyte, favoring REE extraction and allowing sustainable reuse of the leaching agent. This study shows a promising technology that is suitable for primary ores and can further be optimized for secondary resources.


Assuntos
Metais Terras Raras/isolamento & purificação , Neodímio , Ácido Cítrico , Lantânio , Fosfatos , Reciclagem
2.
Environ Sci Technol ; 50(5): 2619-26, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26854514

RESUMO

Metal recycling based on urban mining needs to be established to tackle the increasing supply risk of critical metals such as platinum. Presently, efficient strategies are missing for the recovery of platinum from diluted industrial process streams, often characterized by extremely low pHs and high salt concentrations. In this research, halophilic mixed cultures were employed for the biological recovery of platinum (Pt). Halophilic bacteria were enriched from Artemia cysts, living in salt lakes, in different salt matrices (sea salt mixture and NH4Cl; 20-210 g L(-1) salts) and at low to neutral pH (pH 3-7). The main taxonomic families present in the halophilic cultures were Halomonadaceae, Bacillaceae, and Idiomarinaceae. The halophilic cultures were able to recover >98% Pt(II) and >97% Pt(IV) at pH 2 within 3-21 h (4-453 mg Ptrecovered h(-1) g(-1) biomass). X-ray absorption spectroscopy confirmed the reduction to Pt(0) and transmission electron microscopy revealed both intra- and extracellular Pt precipitates, with median diameters of 9-30 nm and 11-13 nm, for Pt(II) and Pt(IV), respectively. Flow cytometric membrane integrity staining demonstrated the preservation of cell viability during platinum recovery. This study demonstrates the Pt recovery potential of halophilic mixed cultures in acidic saline conditions.


Assuntos
Bactérias/metabolismo , Meio Ambiente , Platina/isolamento & purificação , Cloreto de Sódio/farmacologia , Animais , Artemia , Bactérias/efeitos dos fármacos , Bactérias/ultraestrutura , Biomassa , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Precipitação Química , Espectroscopia por Absorção de Raios X
3.
Environ Sci Technol ; 49(12): 7391-9, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26039560

RESUMO

Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO(•)) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d(-1). The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO(•) scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m(-3), with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices.


Assuntos
Peróxido de Hidrogênio/química , Carbamazepina/química , Cloretos/análise , Cloro/química , Eletricidade , Técnicas Eletroquímicas , Eletrodos , Concentração de Íons de Hidrogênio , Compostos Orgânicos/análise , Oxirredução , Raios Ultravioleta , Águas Residuárias/química , Água/química , Poluentes Químicos da Água/análise , Purificação da Água
4.
BMC Microbiol ; 14: 133, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24884540

RESUMO

BACKGROUND: Recent scientific developments have shed more light on the importance of the host-microbe interaction, particularly in the gut. However, the mechanistic study of the host-microbe interplay is complicated by the intrinsic limitations in reaching the different areas of the gastrointestinal tract (GIT) in vivo. In this paper, we present the technical validation of a new device--the Host-Microbiota Interaction (HMI) module--and the evidence that it can be used in combination with a gut dynamic simulator to evaluate the effect of a specific treatment at the level of the luminal microbial community and of the host surface colonization and signaling. RESULTS: The HMI module recreates conditions that are physiologically relevant for the GIT: i) a mucosal area to which bacteria can adhere under relevant shear stress (3 dynes cm(-2)); ii) the bilateral transport of low molecular weight metabolites (4 to 150 kDa) with permeation coefficients ranging from 2.4 × 10(-6) to 7.1 × 10(-9) cm sec(-1); and iii) microaerophilic conditions at the bottom of the growing biofilm (PmO2 = 2.5 × 10(-4) cm sec(-1)). In a long-term study, the host's cells in the HMI module were still viable after a 48-hour exposure to a complex microbial community. The dominant mucus-associated microbiota differed from the luminal one and its composition was influenced by the treatment with a dried product derived from yeast fermentation. The latter--with known anti-inflammatory properties--induced a decrease of pro-inflammatory IL-8 production between 24 and 48 h. CONCLUSIONS: The study of the in vivo functionality of adhering bacterial communities in the human GIT and of the localized effect on the host is frequently hindered by the complexity of reaching particular areas of the GIT. The HMI module offers the possibility of co-culturing a gut representative microbial community with enterocyte-like cells up to 48 h and may therefore contribute to the mechanistic understanding of host-microbiome interactions.


Assuntos
Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Trato Gastrointestinal/microbiologia , Microbiota/fisiologia , Modelos Biológicos , Humanos
5.
Environ Sci Technol ; 48(1): 550-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24350777

RESUMO

Biogenic catalysts have been studied over the last 10 years in freshwater and soil environments, but neither their formation nor their application has been explored in marine ecosystems. The objective of this study was to develop a biogenic nanopalladium-based remediation method for reducing chlorinated hydrocarbons from marine environments by employing indigenous marine bacteria. Thirty facultative aerobic marine strains were isolated from two contaminated sites, the Lagoon of Mar Chica, Morocco, and Priolo Gargallo Syracuse, Italy. Eight strains showed concurrent palladium precipitation and biohydrogen production. X-ray diffraction and thin section transmission electron microscopy analysis indicated the presence of metallic Pd nanoparticles of various sizes (5-20 nm) formed either in the cytoplasm, in the periplasmic space, or extracellularly. These biogenic catalysts were used to dechlorinate trichloroethylene in simulated marine environments. Complete dehalogenation of 20 mg L(-1) trichloroethylene was achieved within 1 h using 50 mg L(-1) biogenic nanopalladium. These biogenic nanoparticles are promising developments for future marine bioremediation applications.


Assuntos
Desulfovibrio desulfuricans/metabolismo , Hidrocarbonetos Clorados/isolamento & purificação , Nanopartículas Metálicas/química , Paládio/química , Shewanella/metabolismo , Poluentes Químicos da Água/isolamento & purificação , Biodegradação Ambiental , Catálise , Halogenação , Itália , Microscopia Eletrônica de Transmissão , Paládio/isolamento & purificação , Tamanho da Partícula , Tricloroetileno/isolamento & purificação , Microbiologia da Água , Difração de Raios X
6.
Environ Sci Technol ; 48(12): 7135-42, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24844669

RESUMO

Short-chain carboxylates such as acetate are easily produced through mixed culture fermentation of many biological waste streams, although routinely digested to biogas and combusted rather than harvested. We developed a pipeline to extract and upgrade short-chain carboxylates to esters via membrane electrolysis and biphasic esterification. Carboxylate-rich broths are electrolyzed in a cathodic chamber from which anions flux across an anion exchange membrane into an anodic chamber, resulting in a clean acid concentrate with neither solids nor biomass. Next, the aqueous carboxylic acid concentrate reacts with added alcohol in a water-excluding phase to generate volatile esters. In a batch extraction, 96 ± 1.6% of the total acetate was extracted in 48 h from biorefinery thin stillage (5 g L(-1) acetate) at 379 g m(-2) d(-1) (36% Coulombic efficiency). With continuously regenerated thin stillage, the anolyte was concentrated to 14 g/L acetic acid, and converted at 2.64 g (acetate) L(-1) h(-1) in the first hour to ethyl acetate by the addition of excess ethanol and heating to 70 °C, with a final total conversion of 58 ± 3%. This processing pipeline enables direct production of fine chemicals following undefined mixed culture fermentation, embedding carbon in industrial chemicals rather than returning them to the atmosphere as carbon dioxide.


Assuntos
Reatores Biológicos , Ácidos Carboxílicos/síntese química , Eletrólise , Membranas Artificiais , Resíduos/análise , Ácido Acético/síntese química , Biocombustíveis , Eletricidade , Esterificação , Fermentação
7.
Water Res ; 242: 120215, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327546

RESUMO

Metallurgical wastewaters are characterized by a low pH (<4), high concentrations of sulfate (15 gSO42- L-1), and metal(loid)s. Current treatment requires the consumption of chemicals such as alkali and high levels of waste sludge generation. In this study, we have shown that combining water electrolysis and sulfate reducing bioreactors enables the in-situ generation of base and H2, eliminating the need for base and electron donor addition, resulting in the near-zero treatment of metallurgical wastewater. By extracting cations from the effluent of the system to the bioreactor, the bioreactor pH could be maintained by the in-situ production of alkali. The current for pH control varied between 112-753 mol electrons per m³ wastewater or 5-48 A m-2 electrode area. High concentrations of sulfate in the influent and addition of CO2 increased the current required to maintain a steady bioreactor pH. On the other hand, a high sulfate reduction rate and increased influent pH lowered the current required for pH control. Moreover, the current efficiency varied from 14% to 91% and increased with higher pH and cation (Na+, NH4+, K+, Mg2+, Ca2+) concentrations in the middle compartment of the electrochemical cell. The salinity was lowered from 70-120 mS cm-1 in the influent to 5-20 mS cm-1 in the system effluent. The energy consumption of the electrochemical pH control varied between 10 and 100 kWh m-3 and was affected by the conductivity of the wastewater. Industrial wastewater was treated successfully with an average energy consumption of 39 ± 7 kWh m-3, removing sulfate from 15 g SO42- L-1 to 0.5 ± 0.5 g SO42- L-1 at a reduction rate of 20 ± 1 gSO42- L-1 d-1..Metal(loid)s such as As, Cd, Cu, Pb, Te, Tl, Ni and Zn were removed to levels of 1-50 µg L-1.


Assuntos
Sulfatos , Águas Residuárias , Sulfatos/química , Esgotos/química , Metais , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos
8.
Biochem Soc Trans ; 40(6): 1233-8, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23176460

RESUMO

Extracellular electron transfer has, in one decade, emerged from an environmental phenomenon to an industrial process driver. On the one hand, electron transfer towards anodes leads to production of power or chemicals such as hydrogen, caustic soda and hydrogen peroxide. On the other hand, electron transfer from cathodes enables bioremediation and bioproduction. Although the microbiology of extracellular electron transfer is increasingly being understood, bringing the processes to application requires a number of considerations that are both operational and technical. In the present paper, we investigate the key applied aspects related to electricity-driven bioproduction, including biofilm development, reactor and electrode design, substrate fluxes, surface chemistry, hydrodynamics and electrochemistry, and finally end-product removal/toxicity. Each of these aspects will be critical for the full exploitation of the intriguing physiological feat that extracellular electron transfer is today.


Assuntos
Fontes de Energia Bioelétrica , Proteobactérias/metabolismo , Biofilmes , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Eletrodos , Transporte de Elétrons , Concentração de Íons de Hidrogênio , Oxirredução , Proteobactérias/fisiologia
9.
Microb Biotechnol ; 15(3): 755-772, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34927376

RESUMO

Over the past decades, biological treatment of metallurgical wastewaters has become commonplace. Passive systems require intensive land use due to their slow treatment rates, do not recover embedded resources and are poorly controllable. Active systems however require the addition of chemicals, increasing operational costs and possibly negatively affecting safety and the environment. Electrification of biological systems can reduce the use of chemicals, operational costs, surface footprint and environmental impact when compared to passive and active technologies whilst increasing the recovery of resources and the extraction of products. Electrification of low rate applications has resulted in the development of bioelectrochemical systems (BES), but electrification of high rate systems has been lagging behind due to the limited mass transfer, electron transfer and biomass density in BES. We postulate that for high rate applications, the electrification of bioreactors, for example, through the use of electrolyzers, may herald a new generation of electrified biological systems (EBS). In this review, we evaluate the latest trends in the field of biometallurgical and microbial-electrochemical wastewater treatment and discuss the advantages and challenges of these existing treatment technologies. We advocate for future research to focus on the development of electrified bioreactors, exploring the boundaries and limitations of these systems, and their validity upon treating industrial wastewaters.


Assuntos
Águas Residuárias , Purificação da Água , Biomassa , Reatores Biológicos
10.
Environ Sci Ecotechnol ; 11: 100173, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36158753

RESUMO

Metallurgical wastewaters contain high concentrations of sulfate, up to 15 g L-1. Sulfate-reducing bioreactors are employed to treat these wastewaters, reducing sulfates to sulfides which subsequently co-precipitate metals. Sulfate loading and reduction rates are typically restricted by the total H2S concentration. Sulfide stripping, sulfide precipitation and dilution are the main strategies employed to minimize inhibition by H2S, but can be adversely compromised by suboptimal sulfate reduction, clogging and additional energy costs. Here, metallurgical wastewater was treated for over 250 days using two hydrogenotrophic granular activated carbon expanded bed bioreactors without additional removal of sulfides. H2S toxicity was minimized by operating at pH 8 ± 0.15, resulting in an average sulfate removal of 7.08 ± 0.08 g L-1, sulfide concentrations of 2.1 ± 0.2 g L-1 and peaks up to 2.3 ± 0.2 g L-1. A sulfate reduction rate of 20.6 ± 0.9 g L-1 d-1 was achieved, with maxima up to 27.2 g L-1 d-1, which is among the highest reported considering a literature review of 39 studies. The rates reported here are 6-8 times higher than those reported for other reactors without active sulfide removal and the only reported for expanded bed sulfate-reducing bioreactors using H2. By increasing the influent sulfate concentration and maintaining high sulfide concentrations, sulfate reducers were promoted while fermenters and methanogens were suppressed. Industrial wastewater containing 4.4 g L-1 sulfate, 0.036 g L-1 nitrate and various metals (As, Fe, Tl, Zn, Ni, Sb, Co and Cd) was successfully treated with all metal(loid)s, nitrates and sulfates removed below discharge limits.

11.
Chemosphere ; 286(Pt 3): 131935, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34426295

RESUMO

Cu-NH3 bearing effluents arise from electroplating and metal extraction industries, requiring innovative and sustainable Cu recovery technologies to reduce their adverse environmental impact. CO32- and Zn are often co-occurring, and thus, selective Cu recovery from these complex liquid streams is required for economic viability. This study assessed 23 sustainable biosorbents classified as tannin-rich, lignin-rich, chitosan/chitin, dead biomass, macroalgae or biochar for their Cu adsorption capacity and selectivity in a complex NH3-bearing bioleachate. Under a preliminary screen with 12 mM Cu in 1 M ammoniacal solution, most biosorbents showed optimal Cu adsorption at pH 11, with pinecone remarkably showing high removal efficiencies (up to 68%) at all tested pH values. Further refinements on select biosorbents with pH, contact time, and presence of NH3, Zn and CO32- showed again that pinecone has a high maximum adsorption capacity (1.07 mmol g-1), worked over pH 5-12 and was Cu-selective with 3.97 selectivity quotient (KCu/Zn). Importantly, pinecone performance was maintained in a real Cu/NH3/Zn/CO32- bioleachate, with 69.4% Cu removal efficiency. Unlike synthetic adsorbents, pinecones require no pre-treatment, which together with its abundance, selectivity, and efficiency without the need for prior NH3 removal, makes it a competitive and sustainable Cu biosorbent for complex Cu-NH3 bearing streams. Overall, this study demonstrated the potential of integrating bioleaching and biosorption as a clean Cu recovery technology utilizing only sustainable resources (i.e., bio-lixiviant and biosorbents). This presents a closed-loop approach to Cu extraction and recovery from wastes, thus effectively addressing elemental sustainability.


Assuntos
Cobre , Poluentes Químicos da Água , Adsorção , Biomassa , Galvanoplastia , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/análise
12.
Environ Sci Technol ; 45(13): 5737-45, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21663047

RESUMO

To decrease the load of pharmaceuticals to the environment, decentralized wastewater treatment has been proposed for important point-sources such as hospitals. In this study, a microbial electrolysis cell (MEC) was used for the dehalogenation of the iodinated X-ray contrast medium diatrizoate. The presence of biogenic palladium nanoparticles (bio-Pd) in the cathode significantly enhanced diatrizoate removal by direct electrochemical reduction and by reductive catalysis using the H(2) gas produced at the cathode of the MEC. Complete deiodination of 3.3 µM (2 mg L(-1)) diatrizoate from a synthetic medium was achieved after 24 h of recirculation at an applied voltage of -0.4 V. An equimolar amount of the deiodinated metabolite 3,5-diacetamidobenzoate (DAB) was detected. Higher cell voltages increased the dehalogenation rates, resulting in a complete removal after 2 h at -0.8 V. At this cell voltage, the MEC was also able to remove 85% of diatrizoate from hospital effluent containing 0.5 µM (292 µg L(-1)), after 24 h of recirculation. Complete removal was obtained when the effluent was continuously fed at a volumetric loading rate of 204 mg diatrizoate m(-3) total cathodic compartment (TCC) day(-1) to the MEC with a hydraulic retention time of 8 h. At -0.8 V, the MEC system could also eliminate 54% of diatrizoate from spiked urine during a 24 h recirculation experiment. The final product DAB was demonstrated to be removable by nitrifying biomass, which suggests that the combination of a MEC and bio-Pd in its cathode offers potential to dehalogenate pharmaceuticals, and to significantly lower the environmental burden of hospital waste streams.


Assuntos
Diatrizoato/metabolismo , Hospitais , Nanopartículas/química , Paládio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Bactérias/metabolismo , Catálise , Diatrizoato/análise , Eletrólise/métodos , Grafite , Hidrogênio , Paládio/química , Análise Espectral , Condutividade Térmica , Poluentes Químicos da Água/análise
13.
Environ Sci Technol ; 45(19): 8506-13, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21877727

RESUMO

Biologically produced monometallic palladium nanoparticles (bio-Pd) have been shown to catalyze the dehalogenation of environmental contaminants, but fail to efficiently catalyze the degradation of other important recalcitrant halogenated compounds. This study represents the first report of biologically produced bimetallic Pd/Au nanoparticle catalysts. The obtained catalysts were tested for the dechlorination of diclofenac and trichlorethylene. When aqueous bivalent Pd(II) and trivalent Au(III) ions were both added to concentrations of 50 mg L(-1) and reduced simultaneously by Shewanella oneidensis in the presence of H(2), the resulting cell-associated bimetallic nanoparticles (bio-Pd/Au) were able to dehalogenate 78% of the initially added diclofenac after 24 h; in comparison, no dehalogenation was observed using monometallic bio-Pd or bio-Au. Other catalyst-synthesis strategies did not show improved dehalogenation of TCE and diclofenac compared with bio-Pd. Synchrotron-based X-ray diffraction, (scanning) transmission electron microscopy and energy dispersive X-ray spectroscopy indicated that the simultaneous reduction of Pd and Au supported on cells of S. oneidensis resulted in the formation of a unique bimetallic crystalline structure. This study demonstrates that the catalytic activity and functionality of possibly environmentally more benign biosupported Pd-catalysts can be improved by coprecipitation with Au.


Assuntos
Poluentes Ambientais/isolamento & purificação , Ouro/química , Halogenação , Metais/química , Nanopartículas/química , Paládio/química , Shewanella/metabolismo , Biodegradação Ambiental , Catálise , Precipitação Química , Diclofenaco/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Nanopartículas/ultraestrutura , Shewanella/ultraestrutura , Fatores de Tempo , Tricloroetileno/isolamento & purificação , Difração de Raios X
14.
Appl Microbiol Biotechnol ; 91(5): 1435-45, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21590286

RESUMO

A new biological inspired method to produce nanopalladium is the precipitation of Pd on a bacterium, i.e., bio-Pd. This bio-Pd can be applied as catalyst in dehalogenation reactions. However, large amounts of hydrogen are required as electron donor in these reactions resulting in considerable costs. This study demonstrates how bacteria, cultivated under fermentative conditions, can be used to reductively precipitate bio-Pd catalysts and generate the electron donor hydrogen. In this way, one could avoid the costs coupled to hydrogen supply. The catalytic activities of Pd(0) nanoparticles produced by different strains of bacteria (bio-Pd) cultivated under fermentative conditions were compared in terms of their ability to dehalogenate the recalcitrant aqueous pollutants diatrizoate and trichloroethylene. While all of the fermentative bio-Pd preparations followed first order kinetics in the dehalogenation of diatrizoate, the catalytic activity differed systematically according to hydrogen production and starting Pd(II) concentration in solution. Batch reactors with nanoparticles formed by Citrobacter braakii showed the highest diatrizoate dehalogenation activity with first order constants of 0.45 ± 0.02 h⁻¹ and 5.58 ± 0.6 h⁻¹ in batches with initial concentrations of 10 and 50 mg L⁻¹ Pd, respectively. Nanoparticles on C. braakii, used in a membrane bioreactor treating influent containing 20 mg L⁻¹ diatrizoate, were capable of dehalogenating 22 mg diatrizoate mg⁻¹ Pd over a period of 19 days before bio-Pd catalytic activity was exhausted. This study demonstrates the possibility to use the combination of Pd(II), a carbon source and bacteria under fermentative conditions for the abatement of environmental halogenated contaminants.


Assuntos
Bactérias/metabolismo , Diatrizoato/metabolismo , Recuperação e Remediação Ambiental/métodos , Hidrogênio/metabolismo , Nanopartículas Metálicas/química , Paládio/química , Poluentes Químicos da Água/metabolismo , Bactérias/química , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Catálise , Recuperação e Remediação Ambiental/instrumentação , Fermentação , Cinética , Nanopartículas Metálicas/microbiologia , Oxirredução , Paládio/metabolismo
15.
Biotechnol Lett ; 33(1): 89-95, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20865443

RESUMO

PURPOSE OF WORK: Hydrodehalogenation of persistent pollutants, such as the groundwater contaminants trichloroethylene and diatrizoate, are catalyzed by biogenic Pd nanoparticles. As H(2) gas supply for the dehalogenation reactions is still the limiting factor, this study examines in situ H(2) production in the cathode of a microbial electrolysis cell. In a biogenic Pd nanoparticle (bio-Pd) free microbial electrolysis cell (MEC), dechlorination of trichloroethylene (TCE) with concomitant chloride and ethane formation was achieved in the cathode compartment at a removal rate of 120 g TCE m(-3) total cathode compartment (TCC) day(-1), applying -0.8 V with a power source. When the cathode granules were coated with 5 mg bio-Pd g(-1) graphite, chloride and ethane formation increased to 151 g TCE m(-3) TCC day(-1) corresponding with a specific removal rate of 48 mg TCE g(-1) Pd day(-1). In both cases, formation of unwanted byproducts, such as vinyl chloride, was not significant. When the same setup was applied for transformation of the iodinated contrast medium diatrizoate (diaI(3)), reduction in a catalyst-free cathode of a MEC resulted in a removal of 48 ± 9% during the first h corresponding to 3 g diaI(3) m(-3) TCC day(-1). Coating the cathodic graphite granules with bio-Pd enhanced the transformation resulting in a 93 ± 4% removal during the first h corresponding to 6 g diaI(3) m(-3) TCC day(-1). These results suggest that MECs can produce H(2) in a sustainable way to provide an economical interesting reactant for bio-Pd catalyzed dehalogenation reactions.


Assuntos
Eletrodos/microbiologia , Poluentes Ambientais/metabolismo , Hidrogênio/metabolismo , Nanopartículas , Paládio/metabolismo , Tricloroetileno/metabolismo , Purificação da Água/métodos , Biotransformação , Cloretos/metabolismo , Eletrólise/métodos , Etano/metabolismo
16.
J Hazard Mater ; 403: 123842, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264923

RESUMO

With the number of easily accessible ores depleting, alternate primary and secondary sources are required to meet the increasing demand of economically important metals. Whilst highly abundant, these materials are of lower grade with respect to traditional ores, thus highly selective and sustainable metal extraction technologies are needed to reduce processing costs. Here, we investigated the metal leaching potential of biogenic ammonia produced by a ureolytic strain of Lysinibacillus sphaericus on eight primary and secondary materials, comprised of mining and metallurgical residues, sludges and automotive shredder residues (ASR). For the majority of materials, moderate to high yields (30-70%) and very high selectivity (>97% against iron) of copper and zinc were obtained with 1 mol L-1 total ammonia. Optimal leaching was achieved and further refined for the ASR in a two-step indirect leaching system with biogenic ammonia. Copper leaching was the result of local corrosion and differences in leaching against the synthetic (NH4)2CO3 control could be accounted for by pH shifts from microbial metabolism, subsequently altering free NH3 required for coordination. These results provide important findings for future sustainable metal recovery technologies from secondary materials.


Assuntos
Cobre , Zinco , Amônia , Bacillaceae , Minerais
17.
J Hazard Mater ; 409: 124418, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33250307

RESUMO

Precipitation of arsenic as As2S3 produces little waste sludge, has the potential for low chemical consumption and for selective metal(loid) removal. In this study, arsenic removal from acidic (pH 2), metallurgical wastewater was tested in industrially relevant conditions. Sulfides added at a S:As molar ratio of 2.5 and 5 resulted in removal of 99% and 84% of As(III) and As(V). Precipitation of As2S3 from the As(III) and industrial wastewater containing 17% As(V) was nearly instantaneous. For the synthetic As(V) solution, reduction to As(III) was the rate limiting step. At a S:As ratio of 20 and an observed removal rate (k2 = 4.8 (mol L-1) h-1), two hours were required to remove of 93% of arsenic from a 1 g As L-1 solution. In the case of As(V) in industrial samples this time lag was not observed, showing that components in the industrial wastewater affected the removal and reduction of arsenate. Speciation also affected flocculation and coagulation characteristics of As2S3 particles: As(V) reduction resulted in poor coagulation and flocculation. Selective precipitation of arsenic was possible, but depended on speciation, S:As ratio and other metals present.

18.
Appl Environ Microbiol ; 76(4): 1082-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20038697

RESUMO

The presence of enteric viruses in drinking water is a potential health risk. Growing interest has arisen in nanometals for water disinfection, in particular the use of silver-based nanotechnology. In this study, Lactobacillus fermentum served as a reducing agent and bacterial carrier matrix for zerovalent silver nanoparticles, referred to as biogenic Ag(0). The antiviral action of biogenic Ag(0) was examined in water spiked with an Enterobacter aerogenes-infecting bacteriophage (UZ1). Addition of 5.4 mg liter(-1) biogenic Ag(0) caused a 4.0-log decrease of the phage after 1 h, whereas the use of chemically produced silver nanoparticles (nAg(0)) showed no inactivation within the same time frame. A control experiment with 5.4 mg liter(-1) ionic Ag+ resulted in a similar inactivation after 5 h only. The antiviral properties of biogenic Ag(0) were also demonstrated on the murine norovirus 1 (MNV-1), a model organism for human noroviruses. Biogenic Ag(0) was applied to an electropositive cartridge filter (NanoCeram) to evaluate its capacity for continuous disinfection. Addition of 31.25 mg biogenic Ag(0) m(-2) on the filter (135 mg biogenic Ag(0) kg(-1) filter medium) caused a 3.8-log decline of the virus. In contrast, only a 1.5-log decrease could be obtained with the original filter. This is the first report to demonstrate the antiviral efficacy of extracellular biogenic Ag(0) and its promising opportunities for continuous water disinfection.


Assuntos
Desinfecção/métodos , Água Doce/virologia , Nanopartículas Metálicas , Prata , Purificação da Água/métodos , Animais , Antivirais/farmacologia , Bacteriófagos/efeitos dos fármacos , Desinfetantes/farmacologia , Desinfecção/instrumentação , Enterobacter aerogenes/virologia , Humanos , Limosilactobacillus fermentum/metabolismo , Camundongos , Nanotecnologia , Norovirus/efeitos dos fármacos , Purificação da Água/instrumentação , Abastecimento de Água
19.
Environ Sci Technol ; 44(19): 7635-40, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20822130

RESUMO

The catalytic properties of various metal nanoparticles have led to their use in environmental remediation. Our aim is to develop and apply an efficient bioremediation method based on in situ biosynthesis of bio-Pd nanoparticles and hydrogen. C. pasteurianum BC1 was used to reduce Pd(II) ions to form Pd nanoparticles (bio-Pd) that primarily precipitated on the cell wall and in the cytoplasm. C. pasteurianum BC1 cells, loaded with bio-Pd nanoparticle in the presence of glucose, were subsequently used to fermentatively produce hydrogen and to effectively catalyze the removal of soluble Cr(VI) via reductive transformation to insoluble Cr(III) species. Batch and aquifer microcosm experiments using C. pasteurianum BC1 cells loaded with bio-Pd showed efficient reductive Cr(VI) removal, while in control experiments with killed or viable but Pd-free bacterial cultures no reductive Cr(VI) removal was observed. Our results suggest a novel process where the in situ microbial production of hydrogen is directly coupled to the catalytic bio-Pd mediated reduction of chromate. This process offers significant advantages over the current groundwater treatment technologies that rely on introducing preformed catalytic nanoparticles into groundwater treatment zones and the costly addition of molecular hydrogen to above ground pump and treat systems.


Assuntos
Cromatos/metabolismo , Clostridium/metabolismo , Hidrogênio/metabolismo , Nanopartículas Metálicas , Paládio/química , Biocatálise , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Oxirredução
20.
Environ Sci Technol ; 44(16): 6350-6, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20704235

RESUMO

The rare earth element cerium has been known to exert antifungal and antibacterial properties in the oxidation states +III and +IV. This study reports on an innovative strategy for virus removal in drinking water by the combination of Ce(III) on a bacterial carrier matrix. The biogenic cerium (bio-Ce) was produced by addition of aqueous Ce(III) to actively growing cultures of either freshwater manganese-oxidizing bacteria (MOB) Leptothrix discophora or Pseudomonas putida MnB29. X-ray absorption spectroscopy results indicated that Ce remained in its trivalent state on the bacterial surface. The spectra were consistent with Ce(III) ions associated with the phosphoryl groups of the bacterial cell wall. In disinfection assays using a bacteriophage as model, it was demonstrated that bio-Ce exhibited antiviral properties. A 4.4 log decrease of the phage was observed after 2 h of contact with 50 mg L(-1) bio-Ce. Given the fact that virus removal with 50 mg L(-1) Ce(III) as CeNO(3) was lower, the presence of the bacterial carrier matrix in bio-Ce significantly enhanced virus removal.


Assuntos
Bacteriófagos/isolamento & purificação , Cério/metabolismo , Leptothrix/metabolismo , Pseudomonas putida/metabolismo , Biodegradação Ambiental , Biomassa , Manganês/metabolismo , Oxirredução , Pseudomonas putida/ultraestrutura , Solubilidade , Fatores de Tempo , Inativação de Vírus , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA