RESUMO
Somatic hotspot mutations and structural amplifications and fusions that affect fibroblast growth factor receptor 2 (encoded by FGFR2) occur in multiple types of cancer1. However, clinical responses to FGFR inhibitors have remained variable1-9, emphasizing the need to better understand which FGFR2 alterations are oncogenic and therapeutically targetable. Here we apply transposon-based screening10,11 and tumour modelling in mice12,13, and find that the truncation of exon 18 (E18) of Fgfr2 is a potent driver mutation. Human oncogenomic datasets revealed a diverse set of FGFR2 alterations, including rearrangements, E1-E17 partial amplifications, and E18 nonsense and frameshift mutations, each causing the transcription of E18-truncated FGFR2 (FGFR2ΔE18). Functional in vitro and in vivo examination of a compendium of FGFR2ΔE18 and full-length variants pinpointed FGFR2-E18 truncation as single-driver alteration in cancer. By contrast, the oncogenic competence of FGFR2 full-length amplifications depended on a distinct landscape of cooperating driver genes. This suggests that genomic alterations that generate stable FGFR2ΔE18 variants are actionable therapeutic targets, which we confirmed in preclinical mouse and human tumour models, and in a clinical trial. We propose that cancers containing any FGFR2 variant with a truncated E18 should be considered for FGFR-targeted therapies.
Assuntos
Éxons , Deleção de Genes , Terapia de Alvo Molecular , Neoplasias , Oncogenes , Inibidores de Proteínas Quinases , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Animais , Éxons/genética , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Oncogenes/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismoRESUMO
Cancer-associated systemic inflammation is strongly linked to poor disease outcome in patients with cancer1,2. For most human epithelial tumour types, high systemic neutrophil-to-lymphocyte ratios are associated with poor overall survival3, and experimental studies have demonstrated a causal relationship between neutrophils and metastasis4,5. However, the cancer-cell-intrinsic mechanisms that dictate the substantial heterogeneity in systemic neutrophilic inflammation between tumour-bearing hosts are largely unresolved. Here, using a panel of 16 distinct genetically engineered mouse models for breast cancer, we uncover a role for cancer-cell-intrinsic p53 as a key regulator of pro-metastatic neutrophils. Mechanistically, loss of p53 in cancer cells induced the secretion of WNT ligands that stimulate tumour-associated macrophages to produce IL-1ß, thus driving systemic inflammation. Pharmacological and genetic blockade of WNT secretion in p53-null cancer cells reverses macrophage production of IL-1ß and subsequent neutrophilic inflammation, resulting in reduced metastasis formation. Collectively, we demonstrate a mechanistic link between the loss of p53 in cancer cells, secretion of WNT ligands and systemic neutrophilia that potentiates metastatic progression. These insights illustrate the importance of the genetic makeup of breast tumours in dictating pro-metastatic systemic inflammation, and set the stage for personalized immune intervention strategies for patients with cancer.
Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Inflamação/genética , Inflamação/patologia , Metástase Neoplásica/patologia , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteínas Wnt/metabolismo , Animais , Neoplasias da Mama/complicações , Modelos Animais de Doenças , Feminino , Inflamação/complicações , Inflamação/imunologia , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Camundongos , Neutrófilos/imunologiaRESUMO
Genetically engineered mouse models (GEMMs) of cancer have proven to be of great value for basic and translational research. Although CRISPR-based gene disruption offers a fast-track approach for perturbing gene function and circumvents certain limitations of standard GEMM development, it does not provide a flexible platform for recapitulating clinically relevant missense mutations in vivo. To this end, we generated knock-in mice with Cre-conditional expression of a cytidine base editor and tested their utility for precise somatic engineering of missense mutations in key cancer drivers. Upon intraductal delivery of sgRNA-encoding vectors, we could install point mutations with high efficiency in one or multiple endogenous genes in situ and assess the effect of defined allelic variants on mammary tumorigenesis. While the system also produces bystander insertions and deletions that can stochastically be selected for when targeting a tumor suppressor gene, we could effectively recapitulate oncogenic nonsense mutations. We successfully applied this system in a model of triple-negative breast cancer, providing the proof of concept for extending this flexible somatic base editing platform to other tissues and tumor types.
Assuntos
Neoplasias da Mama/genética , Sistemas CRISPR-Cas , Edição de Genes , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , MutaçãoRESUMO
Heterozygous mutations in the transcription factor GATA3 are identified in 10-15% of all breast cancer cases. Most of these are protein-truncating mutations, concentrated within or downstream of the second GATA-type zinc-finger domain. Here, we investigated the functional consequences of expression of two truncated GATA3 mutants, in vitro in breast cancer cell lines and in vivo in the mouse mammary gland. We found that the truncated GATA3 mutants display altered DNA binding activity caused by preferred tethering through FOXA1. In addition, expression of the truncated GATA3 mutants reduces E-cadherin expression and promotes anchorage-independent growth in vitro. However, we could not identify any effects of truncated GATA3 expression on mammary gland development or mammary tumor formation in mice. Together, our results demonstrate that both truncated GATA3 mutants promote cistromic re-programming of GATA3 in vitro, but these mutants are not sufficient to induce tumor formation in mice.
Assuntos
Neoplasias da Mama/patologia , Reprogramação Celular , Fator de Transcrição GATA3/genética , Glândulas Mamárias Animais/citologia , Neoplasias Mamárias Animais/patologia , Mutação , Animais , Apoptose , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Caderinas/genética , Caderinas/metabolismo , Adesão Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Feminino , Fator de Transcrição GATA3/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Técnicas In Vitro , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , CamundongosRESUMO
Approximately 75% of all breast cancers express the nuclear hormone receptor estrogen receptor α (ERα). However, the majority of mammary tumors from genetically engineered mouse models (GEMMs) are ERα-negative. To model ERα-positive breast cancer in mice, we exogenously introduced expression of mouse and human ERα in an existing GEMM of p53-deficient breast cancer. After initial ERα expression during mammary gland development, expression was reduced or lost in adult glands and p53-deficient mammary tumors. Chromatin immunoprecipitation (ChIP)-sequencing analysis of primary mouse mammary epithelial cells (MMECs) derived from these models, in which expression of the ERα constructs was induced in vitro, confirmed interaction of ERα with the DNA. In human breast and endometrial cancer, and also in healthy breast tissue, DNA binding of ERα is facilitated by the pioneer factor FOXA1. Surprisingly, the ERα binding sites identified in primary MMECs, but also in mouse mammary gland and uterus, showed an high enrichment of ERE motifs, but were devoid of Forkhead motifs. Furthermore, exogenous introduction of FOXA1 and GATA3 in ERα-expressing MMECs was not sufficient to promote ERα-responsiveness of these cells. Together, this suggests that species-specific differences in pioneer factor usage between mouse and human are dictated by the DNA sequence, resulting in ERα-dependencies in mice that are not FOXA1 driven. These species-specific differences in ERα-biology may limit the utility of mice for in vivo modeling of ERα-positive breast cancer.
Assuntos
Células Epiteliais/patologia , Receptor alfa de Estrogênio/metabolismo , Fator de Transcrição GATA3/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Neoplasias Mamárias Animais/patologia , Proteína Supressora de Tumor p53/deficiência , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Fator de Transcrição GATA3/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Camundongos , Proteína Supressora de Tumor p53/genéticaRESUMO
Metaplastic breast carcinoma (MBC) is a rare histological breast cancer subtype characterized by mesenchymal elements and poor clinical outcome. A large fraction of MBCs harbor defects in breast cancer 1 (BRCA1). As BRCA1 deficiency sensitizes tumors to DNA cross-linking agents and poly(ADP-ribose) polymerase (PARP) inhibitors, we sought to investigate the response of BRCA1-deficient MBCs to the PARP inhibitor olaparib. To this end, we established a genetically engineered mouse model (GEMM) for BRCA1-deficient MBC by introducing the MET proto-oncogene into a BRCA1-associated breast cancer model, using our novel female GEMM ES cell (ESC) pipeline. In contrast to carcinomas, BRCA1-deficient mouse carcinosarcomas resembling MBC show intrinsic resistance to olaparib caused by increased P-glycoprotein (Pgp) drug efflux transporter expression. Indeed, resistance could be circumvented by using another PARP inhibitor, AZD2461, which is a poor Pgp substrate. These preclinical findings suggest that patients with BRCA1-associated MBC may show poor response to olaparib and illustrate the value of GEMM-ESC models of human cancer for evaluation of novel therapeutics.
Assuntos
Proteína BRCA1/deficiência , Neoplasias Mamárias Experimentais/tratamento farmacológico , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Proteína BRCA1/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinossarcoma/tratamento farmacológico , Carcinossarcoma/genética , Carcinossarcoma/metabolismo , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Metaplasia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poli(ADP-Ribose) Polimerases/metabolismo , Proto-Oncogene Mas , Análise de SobrevidaRESUMO
Mevalonate kinase deficiency (MKD) is an autosomal recessive metabolic disorder associated with recurrent autoinflammatory episodes. The disorder is caused by bi-allelic loss-of-function variants in the MVK gene, which encodes mevalonate kinase (MK), an early enzyme in the isoprenoid biosynthesis pathway. To identify molecular and cellular consequences of MKD, we studied primary fibroblasts from severely affected patients with mevalonic aciduria (MKD-MA) and more mildly affected patients with hyper IgD and periodic fever syndrome (MKD-HIDS). As previous findings indicated that the deficient MK activity in MKD impacts protein prenylation in a temperature-sensitive manner, we compared the subcellular localization and activation of the small Rho GTPases RhoA, Rac1 and Cdc42 in control, MKD-HIDS and MKD-MA fibroblasts cultured at physiological and elevated temperatures. This revealed a temperature-induced altered subcellular localization and activation in the MKD cells. To study if and how the temperature-induced ectopic activation of these signalling proteins affects cellular processes, we performed comparative transcriptome analysis of control and MKD-MA fibroblasts cultured at 37 °C or 40 °C. This identified cell cycle and actin cytoskeleton organization as respectively most down- and upregulated gene clusters. Further studies confirmed that these processes were affected in fibroblasts from both patients with MKD-MA and MKD-HIDS. Finally, we found that, similar to immune cells, the MK deficiency causes metabolic reprogramming in MKD fibroblasts resulting in increased expression of genes involved in glycolysis and the PI3K/Akt/mTOR pathway. We postulate that the ectopic activation of small GTPases causes inappropriate signalling contributing to the molecular and cellular aberrations observed in MKD.
Assuntos
Fibroblastos , Deficiência de Mevalonato Quinase , Deficiência de Mevalonato Quinase/genética , Deficiência de Mevalonato Quinase/metabolismo , Deficiência de Mevalonato Quinase/patologia , Humanos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Células Cultivadas , Transdução de SinaisRESUMO
Myb-like SWIRM and MPN domains 1 (MYSM1) is a chromatin binding protein with deubiquitinase (DUB) catalytic activity. Rare MYSM1 mutations in human patients result in an inherited bone marrow failure syndrome, highlighting the biomedical significance of MYSM1 in the hematopoietic system. We and others characterized Mysm1-knockout mice as a model of this disorder and established that MYSM1 regulates hematopoietic function and leukocyte development in such models through different mechanisms. It is, however, unknown whether the DUB catalytic activity of MYSM1 is universally required for its many functions and for the maintenance of hematopoiesis in vivo. To test this, here we generated a new mouse strain carrying a Mysm1D660N point mutation (Mysm1DN) and demonstrated that the mutation renders MYSM1 protein catalytically inactive. We characterized Mysm1DN/DN and Mysm1fl/DN CreERT2 mice, against appropriate controls, for constitutive and inducible loss of MYSM1 catalytic function. We report a profound similarity in the developmental, hematopoietic, and immune phenotypes resulting from the loss of MYSM1 catalytic function and the full loss of MYSM1 protein. Overall, our work for the first time establishes the critical role of MYSM1 DUB catalytic activity in vivo in hematopoiesis, leukocyte development, and other aspects of mammalian physiology.
Assuntos
Endopeptidases , Proteases Específicas de Ubiquitina , Humanos , Camundongos , Animais , Endopeptidases/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Diferenciação Celular , Hematopoese/genética , Mutação , Células-Tronco Hematopoéticas/metabolismo , Camundongos Knockout , Mamíferos/metabolismo , Transativadores/metabolismoRESUMO
The isoprenoid biosynthesis pathway provides the cell with a variety of compounds which are involved in multiple cellular processes. Inhibition of this pathway with statins and bisphosphonates is widely applied in the treatment of hypercholesterolemia and metabolic bone disease, respectively. In addition, since isoprenylation of proteins is an important therapeutic target in cancer research there is interest in interfering with isoprenoid biosynthesis, for which new inhibitors to block farnesylation and geranylgeranylation of small GTPases are being developed. We recently developed a sensitive method using UPLC-MS/MS that allows the direct detection and quantification of all intermediates of the mevalonate pathway from MVA to GGPP which can be used to verify the specificity of inhibitors of the isoprenoid biosynthesis pathway. We here investigated the specificity of several inhibitors of the isoprenoid biosynthesis pathway in HepG2 cells, fibroblasts and lymphoblasts. The nitrogen-containing bisphosphonates pamidronate and zoledronate specifically inhibit farnesyl pyrophosphate synthase indicated by the accumulation of IPP/DMAPP. However, zaragozic acid A, a squalene synthase inhibitor, causes an increase of MVA in addition to the expected increase of FPP. Analysis of isoprenoid intermediate profiles after incubation with 6-fluoromevalonate showed a very nonspecific result with an increase in MVA, MVAP, MVAPP and IPP/DMAPP. These results show that inhibitors of a particular enzyme of the isoprenoid biosynthesis pathway can have additional effects on other enzymes of the pathway either direct or indirect through accumulation of isoprenoid intermediates. Our method can be used to test new inhibitors and their effect on overall isoprenoid biosynthesis.
Assuntos
Cromatografia Líquida , Ácido Mevalônico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas em Tandem , Terpenos/metabolismo , Alquil e Aril Transferases/antagonistas & inibidores , Conservadores da Densidade Óssea/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Difosfonatos/farmacologia , Inibidores Enzimáticos/farmacologia , Farnesil-Difosfato Farnesiltransferase/antagonistas & inibidores , Farnesiltranstransferase/antagonistas & inibidores , Fibroblastos/metabolismo , Células Hep G2/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Imidazóis/farmacologia , Linfócitos/metabolismo , Ácido Mevalônico/análogos & derivados , Pamidronato , Prenilação , Ácidos Tricarboxílicos/farmacologia , Ácido ZoledrônicoRESUMO
The detyrosination-tyrosination cycle involves the removal and religation of the C-terminal tyrosine of α-tubulin and is implicated in cognitive, cardiac, and mitotic defects. The vasohibin-small vasohibin-binding protein (SVBP) complex underlies much, but not all, detyrosination. We used haploid genetic screens to identify an unannotated protein, microtubule associated tyrosine carboxypeptidase (MATCAP), as a remaining detyrosinating enzyme. X-ray crystallography and cryo-electron microscopy structures established MATCAP's cleaving mechanism, substrate specificity, and microtubule recognition. Paradoxically, whereas abrogation of tyrosine religation is lethal in mice, codeletion of MATCAP and SVBP is not. Although viable, defective detyrosination caused microcephaly, associated with proliferative defects during neurogenesis, and abnormal behavior. Thus, MATCAP is a missing component of the detyrosination-tyrosination cycle, revealing the importance of this modification in brain formation.
Assuntos
Carboxipeptidases , Proteínas Associadas aos Microtúbulos , Microtúbulos , Processamento de Proteína Pós-Traducional , Tubulina (Proteína) , Tirosina , Animais , Carboxipeptidases/genética , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/química , Tubulina (Proteína)/química , Tirosina/químicaRESUMO
The limited efficacy of immune checkpoint inhibitor treatment in triple-negative breast cancer (TNBC) patients is attributed to sparse or unresponsive tumor-infiltrating lymphocytes, but the mechanisms that lead to a therapy resistant tumor immune microenvironment are incompletely known. Here we show a strong correlation between MYC expression and loss of immune signatures in human TNBC. In mouse models of TNBC proficient or deficient of breast cancer type 1 susceptibility gene (BRCA1), MYC overexpression dramatically decreases lymphocyte infiltration in tumors, along with immune signature remodelling. MYC-mediated suppression of inflammatory signalling induced by BRCA1/2 inactivation is confirmed in human TNBC cell lines. Moreover, MYC overexpression prevents the recruitment and activation of lymphocytes in both human and mouse TNBC co-culture models. Chromatin-immunoprecipitation-sequencing reveals that MYC, together with its co-repressor MIZ1, directly binds promoters of multiple interferon-signalling genes, resulting in their downregulation. MYC overexpression thus counters tumor growth inhibition by a Stimulator of Interferon Genes (STING) agonist via suppressing induction of interferon signalling. Together, our data reveal that MYC suppresses innate immunity and facilitates tumor immune escape, explaining the poor immunogenicity of MYC-overexpressing TNBCs.
Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Interferons , Linfócitos do Interstício Tumoral , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral/genética , Proteínas Proto-Oncogênicas c-myc/metabolismoRESUMO
BRCA1-mutated breast cancer is primarily driven by DNA copy-number alterations (CNAs) containing large numbers of candidate driver genes. Validation of these candidates requires novel approaches for high-throughput in vivo perturbation of gene function. Here we develop genetically engineered mouse models (GEMMs) of BRCA1-deficient breast cancer that permit rapid introduction of putative drivers by either retargeting of GEMM-derived embryonic stem cells, lentivirus-mediated somatic overexpression or in situ CRISPR/Cas9-mediated gene disruption. We use these approaches to validate Myc, Met, Pten and Rb1 as bona fide drivers in BRCA1-associated mammary tumorigenesis. Iterative mouse modeling and comparative oncogenomics analysis show that MYC-overexpression strongly reshapes the CNA landscape of BRCA1-deficient mammary tumors and identify MCL1 as a collaborating driver in these tumors. Moreover, MCL1 inhibition potentiates the in vivo efficacy of PARP inhibition (PARPi), underscoring the therapeutic potential of this combination for treatment of BRCA1-mutated cancer patients with poor response to PARPi monotherapy.
Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Carcinogênese/genética , Variações do Número de Cópias de DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Mutação , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Transformação Celular Neoplásica/genética , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Células-Tronco Embrionárias , Feminino , Redes Reguladoras de Genes , Células HEK293 , Humanos , Neoplasias Mamárias Animais/genética , Camundongos , Camundongos Transgênicos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Transcriptoma , Proteína Supressora de Tumor p53/genéticaRESUMO
Isoprenoids constitute an important class of biomolecules that participate in many different cellular processes. Most available detection methods allow the identification of only one or two specific nonsterol isoprenoid intermediates following radioactive or fluorescent labeling. We here report a rapid, nonradioactive, and sensitive procedure for the simultaneous detection and quantification of the eight main nonsterol intermediates of the isoprenoid biosynthesis pathway by means of tandem mass spectrometry. Intermediates were analyzed by HPLC-MS/MS in the multiple reaction monitoring mode using a silica-based C(18) HPLC column. For quantification, their stable isotope-labeled analogs were used as internal standards. HepG2 cells were used to validate the method. Mevalonate, phosphomevalonate, and the six subsequent isoprenoid pyrophosphates were readily determined with detection limits ranging from 0.03 to 1.0mumol/L. The intra- and interassay variations for HepG2 cell homogenates supplemented with isoprenoid intermediates were 3.6-10.9 and 4.4-11.9%, respectively. Under normal culturing conditions, isoprenoid intermediates in HepG2 cells were below detection limits. However, incubation of the cells with pamidronate, an inhibitor of farnesyl pyrophosphate synthase, resulted in increased levels of mevalonate, isopentenyl pyrophosphate/dimethylallyl pyrophosphate, and geranyl pyrophosphate. This method will be suitable for measuring profiles of isoprenoid intermediates in cells with compromised isoprenoid biosynthesis and for determining the specificity of potential inhibitors of the pathway.
Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Terpenos/análise , Linhagem Celular Tumoral , Humanos , Reprodutibilidade dos TestesRESUMO
Neuroblastoma is an embryonal tumor derived from poorly differentiated neural crest cells. Current research is aimed at identifying the molecular mechanisms that maintain the progenitor state of neuroblastoma cells and to develop novel therapeutic strategies that induce neuroblastoma cell differentiation. Mechanisms controlling neural crest development are typically dysregulated during neuroblastoma progression, and provide an appealing starting point for drug target discovery. Transcriptional programs involved in neural crest development act as a context dependent gene regulatory network. In addition to BMP, Wnt and Notch signaling, activation of developmental gene expression programs depends on the physical characteristics of the tissue microenvironment. TRPM7, a mechanically regulated TRP channel with kinase activity, was previously found essential for embryogenesis and the maintenance of undifferentiated neural crest progenitors. Hence, we hypothesized that TRPM7 may preserve progenitor-like, metastatic features of neuroblastoma cells. Using multiple neuroblastoma cell models, we demonstrate that TRPM7 expression closely associates with the migratory and metastatic properties of neuroblastoma cells in vitro and in vivo. Moreover, microarray-based expression profiling on control and TRPM7 shRNA transduced neuroblastoma cells indicates that TRPM7 controls a developmental transcriptional program involving the transcription factor SNAI2. Overall, our data indicate that TRPM7 contributes to neuroblastoma progression by maintaining progenitor-like features.
Assuntos
Metástase Neoplásica/genética , Proteínas de Neoplasias/fisiologia , Células-Tronco Neoplásicas/citologia , Neuroblastoma/patologia , Proteínas Serina-Treonina Quinases/fisiologia , Canais de Cátion TRPM/fisiologia , Animais , Neoplasias da Medula Óssea/secundário , Divisão Celular , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Neoplasias Hepáticas/secundário , Camundongos , Crista Neural/citologia , Neuroblastoma/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/fisiologia , Transcrição Gênica , Microambiente TumoralRESUMO
Preclinical in vivo validation of target genes for therapeutic intervention requires careful selection and characterization of the most suitable animal model in order to assess the role of these genes in a particular process or disease. To this end, genetically engineered mouse models (GEMMs) are typically used. However, the appropriate engineering of these models is often cumbersome and time consuming. Recently, we and others described a modular approach for fast-track modification of existing GEMMs by re-derivation of embryonic stem cells (ESCs) that can be modified by recombinase-mediated transgene insertion and subsequently used for the production of chimeric mice. This 'GEMM-ESC strategy' allows for rapid in vivo analysis of gene function in the chimeras and their offspring. Moreover, this strategy is compatible with CRISPR/Cas9-mediated genome editing. This protocol describes when and how to use the GEMM-ESC strategy effectively, and it provides a detailed procedure for re-deriving and manipulating GEMM-ESCs under feeder- and serum-free conditions. This strategy produces transgenic mice with the desired complex genotype faster than traditional methods: generation of validated GEMM-ESC clones for controlled transgene integration takes 9-12 months, and recombinase-mediated transgene integration and chimeric cohort production takes 2-3 months. The protocol requires skills in embryology, stem cell biology and molecular biology, and it is ideally performed within, or in close collaboration with, a transgenic facility.
Assuntos
Células-Tronco Embrionárias/fisiologia , Expressão Gênica , Marcação de Genes/métodos , Camundongos Transgênicos , Proteínas/metabolismo , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Recombinação Genética , TransgenesRESUMO
TRPM7 encodes a Ca2+-permeable nonselective cation channel with kinase activity. TRPM7 has been implicated in control of cell adhesion and migration, but whether TRPM7 activity contributes to cancer progression has not been established. Here we report that high levels of TRPM7 expression independently predict poor outcome in breast cancer patients and that it is functionally required for metastasis formation in a mouse xenograft model of human breast cancer. Mechanistic investigation revealed that TRPM7 regulated myosin II-based cellular tension, thereby modifying focal adhesion number, cell-cell adhesion and polarized cell movement. Our findings therefore suggest that TRPM7 is part of a mechanosensory complex adopted by cancer cells to drive metastasis formation.