Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Skin Res Technol ; 22(3): 284-94, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26508353

RESUMO

BACKGROUND: The reliability of the biophysical properties of skin equivalents (SEs) remains a challenge for medical applications and for product efficacy tests following the European Directive 2003/15/EC2 on the prohibition of animal experiments for cosmetic products. METHODS: We propose to adapt the biophysical in vivo testing techniques to compare full thickness model growth vs. time. The interest in using such techniques lies in possible comparisons between in vivo and in vitro skin as well as monitoring samples over the culture time. RESULTS: High frequency ultrasound technique, optical coherence tomography (OCT), and laser scanning microscopy were used to analyze SEs morphology at days D42 and D60 whereas their microstructure was assessed through transmission electron microscopy and classical histology. A correlation between these observations and mechanical measurements has been proposed so as to underline the consequence of both the development of the dermis elastic fibers and the epidermis differentiation. CONCLUSION: Ultrasounds measurements show a highly homogeneous dermis whereas the OCT technique clearly distinguishes the stratum corneum and the living epidermis. The increase in the thicknesses of these layers as well as the growth in elastin and collagen fibers results in strong modifications of the samples mechanical properties.


Assuntos
Órgãos Bioartificiais/efeitos adversos , Bioprótese/classificação , Teste de Materiais/métodos , Fenômenos Fisiológicos da Pele , Pele Artificial/classificação , Pele/anatomia & histologia , Humanos , Microscopia Confocal/métodos , Microscopia Eletrônica de Transmissão/métodos , Pele/diagnóstico por imagem , Engenharia Tecidual/métodos , Tomografia de Coerência Óptica/métodos , Ultrassonografia/métodos
2.
Adipocyte ; 4(3): 161-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26257990

RESUMO

Obesity is linked to adipose tissue hypertrophy (increased adipocyte cell size) and hyperplasia (increased cell number). Comparative analyses of gene datasets allowed us to identify 1426 genes which may represent common adipose phenotype in humans and mice. Among them we identified several adipocyte-specific genes dysregulated in obese adipose tissue, involved in either fatty acid storage (acyl CoA synthase ACSL1, hormone-sensitive lipase LIPE, aquaporin 7 AQP7, perilipin PLIN) or cell adhesion (fibronectin FN1, collagens COL1A1, COL1A3, metalloprotein MMP9, or both (scavenger receptor FAT/CD36). Using real-time analysis of cell surface occupancy on xCELLigence system we developed a new method to study lipid uptake and differentiation of mouse 3T3L1 fibroblasts and human adipose stem cells. Both processes are regulated by insulin and fatty acids such as oleic acid. We showed that fatty acid addition to culture media increased the differentiation rate and was required for full differentiation into unilocular adipocytes. Significant activation of lipogenesis, i.e. lipid accumulation, by either insulin or oleic acid was monitored in times ranging from 1 to 24 h, depending on differentiation state, whereas significant effects on adipogenesis, i.e., surperimposed lipid accumulation and gene transcriptional regulations were measured after 3 to 4 d. Combination of selected times for analysis of lipid contents, cell counts, size fractionations, and gene transcriptional regulations showed that FAT/CD36 specific inhibitor AP5258 significantly increased cell survival of oleic acid-treated mouse and human adipocytes, and partially restored the transcriptional response to oleic acid in the presence of insulin through JNK pathway. Taken together, these data open new perspectives to study the molecular mechanisms commonly dysregulated in mouse and human obesity at the level of lipogenesis linked to hypertrophy and adipogenesis linked to hyperplasia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA