RESUMO
Noradrenergic activation of the basolateral amygdala (BLA) by emotional arousal enhances different forms of recognition memory via functional interactions with the insular cortex (IC). Human neuroimaging studies have revealed that the anterior IC (aIC), as part of the salience network, is dynamically regulated during arousing situations. Emotional stimulation first rapidly increases aIC activity but suppresses it in a delayed fashion. Here, we investigated in male Sprague-Dawley rats whether the BLA influence on recognition memory is associated with an increase or suppression of aIC activity during the postlearning consolidation period. We first employed anterograde and retrograde viral tracing and found that the BLA sends dense monosynaptic projections to the aIC. Memory-enhancing norepinephrine administration into the BLA following an object training experience suppressed aIC activity 1 h later, as determined by a reduced expression of the phosphorylated form of the transcription factor cAMP response element-binding (pCREB) protein and neuronal activity marker c-Fos. In contrast, the number of perisomatic γ-aminobutyric acid (GABA)ergic inhibitory synapses per pCREB-positive neuron was significantly increased, suggesting a dynamic up-regulation of GABAergic tone. In support of this possibility, pharmacological inhibition of aIC activity with a GABAergic agonist during consolidation enhanced object recognition memory. Norepinephrine administration into the BLA did not affect neuronal activity within the posterior IC, which receives sparse innervation from the BLA. The evidence that noradrenergic activation of the BLA enhances the consolidation of object recognition memory via a mechanism involving a suppression of aIC activity provides insight into the broader brain network dynamics underlying emotional regulation of memory.
Assuntos
Complexo Nuclear Basolateral da Amígdala , Emoções , Córtex Insular , Inibição Neural , Reconhecimento Psicológico , Percepção Visual , Animais , Nível de Alerta , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Emoções/efeitos dos fármacos , Emoções/fisiologia , Agonistas GABAérgicos/farmacologia , Córtex Insular/efeitos dos fármacos , Córtex Insular/fisiologia , Masculino , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Norepinefrina/administração & dosagem , Norepinefrina/farmacologia , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Percepção Visual/fisiologiaRESUMO
Stress following preterm birth can disrupt the emerging foundation of the neonatal brain. The current study examined how structural brain development is affected by a stressful early environment and whether changes in topological architecture at term-equivalent age could explain the increased vulnerability for behavioral symptoms during early childhood. Longitudinal changes in structural brain connectivity were quantified using diffusion-weighted imaging (DWI) and tractography in preterm born infants (gestational age <28 weeks), imaged at 30 and/or 40 weeks of gestation (N = 145, 43.5% female). A global index of postnatal stress was determined based on the number of invasive procedures during hospitalization (e.g., heel lance). Higher stress levels impaired structural connectivity growth in a subnetwork of 48 connections (p = 0.003), including the amygdala, insula, hippocampus, and posterior cingulate cortex. Findings were replicated in an independent validation sample (N = 123, 39.8% female, n = 91 with follow-up). Classifying infants into vulnerable and resilient based on having more or less internalizing symptoms at two to five years of age (n = 71) revealed lower connectivity in the hippocampus and amygdala for vulnerable relative to resilient infants (p < 0.001). Our findings suggest that higher stress exposure during hospital admission is associated with slower growth of structural connectivity. The preservation of global connectivity of the amygdala and hippocampus might reflect a stress-buffering or resilience-enhancing factor against a stressful early environment and early-childhood internalizing symptoms.SIGNIFICANCE STATEMENT The preterm brain is exposed to various external stimuli following birth. The effects of early chronic stress on neonatal brain networks and the remarkable degree of resilience are not well understood. The current study aims to provide an increased understanding of the impact of postnatal stress on third-trimester brain development and describe the topological architecture of a resilient brain. We observed a sparser neonatal brain network in infants exposed to higher postnatal stress. Limbic regulatory regions, including the hippocampus and amygdala, may play a key role as crucial convergence sites of protective factors. Understanding how stress-induced alterations in early brain development might lead to brain (re)organization may provide essential insights into resilient functioning.
Assuntos
Conectoma , Nascimento Prematuro , Lactente , Recém-Nascido , Humanos , Pré-Escolar , Feminino , Masculino , Recém-Nascido Prematuro , Encéfalo/diagnóstico por imagem , Idade Gestacional , Imageamento por Ressonância MagnéticaRESUMO
BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic might affect mental health. Data from population-representative panel surveys with multiple waves including pre-COVID data investigating risk and protective factors are still rare. METHODS: In a stratified random sample of the German household population (n = 6684), we conducted survey-weighted multiple linear regressions to determine the association of various psychological risk and protective factors assessed between 2015 and 2020 with changes in psychological distress [(PD; measured via Patient Health Questionnaire for Depression and Anxiety (PHQ-4)] from pre-pandemic (average of 2016 and 2019) to peri-pandemic (both 2020 and 2021) time points. Control analyses on PD change between two pre-pandemic time points (2016 and 2019) were conducted. Regularized regressions were computed to inform on which factors were statistically most influential in the multicollinear setting. RESULTS: PHQ-4 scores in 2020 (M = 2.45) and 2021 (M = 2.21) were elevated compared to 2019 (M = 1.79). Several risk factors (catastrophizing, neuroticism, and asking for instrumental support) and protective factors (perceived stress recovery, positive reappraisal, and optimism) were identified for the peri-pandemic outcomes. Control analyses revealed that in pre-pandemic times, neuroticism and optimism were predominantly related to PD changes. Regularized regression mostly confirmed the results and highlighted perceived stress recovery as most consistent influential protective factor across peri-pandemic outcomes. CONCLUSIONS: We identified several psychological risk and protective factors related to PD outcomes during the COVID-19 pandemic. A comparison of pre-pandemic data stresses the relevance of longitudinal assessments to potentially reconcile contradictory findings. Implications and suggestions for targeted prevention and intervention programs during highly stressful times such as pandemics are discussed.
Assuntos
COVID-19 , Saúde Mental , Humanos , COVID-19/epidemiologia , COVID-19/psicologia , Fatores de Proteção , Pandemias , Adaptação Psicológica , Ansiedade/epidemiologia , Ansiedade/psicologia , Depressão/epidemiologia , Depressão/psicologiaRESUMO
BACKGROUND: Increasing efforts toward the prevention of stress-related mental disorders have created a need for unobtrusive real-life monitoring of stress-related symptoms. Wearable devices have emerged as a possible solution to aid in this process, but their use in real-life stress detection has not been systematically investigated. OBJECTIVE: We aimed to determine the utility of ecological momentary assessments (EMA) and physiological arousal measured through wearable devices in detecting ecologically relevant stress states. METHODS: Using EMA combined with wearable biosensors for ecological physiological assessments (EPA), we investigated the impact of an ecological stressor (ie, a high-stakes examination week) on physiological arousal and affect compared to a control week without examinations in first-year medical and biomedical science students (51/83, 61.4% female). We first used generalized linear mixed-effects models with maximal fitting approaches to investigate the impact of examination periods on subjective stress exposure, mood, and physiological arousal. We then used machine learning models to investigate whether we could use EMA, wearable biosensors, or the combination of both to classify momentary data (ie, beeps) as belonging to examination or control weeks. We tested both individualized models using a leave-one-beep-out approach and group-based models using a leave-one-subject-out approach. RESULTS: During stressful high-stakes examination (versus control) weeks, participants reported increased negative affect and decreased positive affect. Intriguingly, physiological arousal decreased on average during the examination week. Time-resolved analyses revealed peaks in physiological arousal associated with both momentary self-reported stress exposure and self-reported positive affect. Mediation models revealed that the decreased physiological arousal in the examination week was mediated by lower positive affect during the same period. We then used machine learning to show that while individualized EMA outperformed EPA in its ability to classify beeps as originating from examinations or from control weeks (1603/4793, 33.45% and 1648/4565, 36.11% error rates, respectively), a combination of EMA and EPA yields optimal classification (1363/4565, 29.87% error rate). Finally, when comparing individualized models to group-based models, we found that the individualized models significantly outperformed the group-based models across all 3 inputs (EMA, EPA, and the combination). CONCLUSIONS: This study underscores the potential of wearable biosensors for stress-related mental health monitoring. However, it emphasizes the necessity of psychological context in interpreting physiological arousal captured by these devices, as arousal can be related to both positive and negative contexts. Moreover, our findings support a personalized approach in which momentary stress is optimally detected when referenced against an individual's own data.
Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Feminino , Masculino , Afeto , Autorrelato , Estresse Psicológico/diagnóstico , Avaliação Momentânea EcológicaRESUMO
Abundant evidence shows that early-life stress (ELS) predisposes for the development of stress-related psychopathology when exposed to stressors later in life, but the underlying mechanisms remain unclear. To study predisposing effects of mild ELS on stress sensitivity, we examined in a healthy human population the impact of a history of ELS on acute stress-related changes in corticolimbic circuits involved in emotional processing (i.e., amygdala, hippocampus and ventromedial prefrontal cortex [vmPFC]). Healthy young male participants (n = 120) underwent resting-state functional magnetic resonance imaging (fMRI) in two separate sessions (stress induction vs. control). The Childhood Trauma Questionnaire (CTQ) was administered to index self-reported ELS, and stress induction was verified using salivary cortisol, blood pressure, heart rate and subjective affect. Our findings show that self-reported ELS was negatively associated with baseline cortisol, but not with the acute stress-induced cortisol response. Critically, individuals with more self-reported ELS exhibited an exaggerated reduction of functional connectivity in corticolimbic circuits under acute stress. A mediation analysis showed that the association between ELS and stress-induced changes in amygdala-hippocampal connectivity became stronger when controlling for basal cortisol. Our findings show, in a healthy sample, that the effects of mild ELS on functioning of corticolimbic circuits only become apparent when exposed to an acute stressor and may be buffered by adaptations in hypothalamic-pituitary-adrenal axis function. Overall, our findings might reveal a potential mechanism whereby even mild ELS might confer vulnerability to exposure to stressors later in adulthood.
Assuntos
Experiências Adversas da Infância , Adulto , Humanos , Hidrocortisona , Sistema Hipotálamo-Hipofisário , Imageamento por Ressonância Magnética , Masculino , Sistema Hipófise-Suprarrenal , Estresse PsicológicoRESUMO
The amygdala is a region critically implicated in affective processes. Downregulation of the amygdala is one of the hallmarks of successful emotion regulation. Top-down inhibition of the amygdala is thought to involve activation of the executive control network. This reciprocal relationship, however, is not exclusive to explicit emotion regulation. It has been noted that any cognitively demanding task that activates executive control network may downregulate the amygdala, including a standard working memory task. Such downregulation is likely established in a load-dependent fashion with more cognitive demand leading to stronger deactivation. Using a coordinate-based meta-analysis, we examined whether a standard working memory task downregulates the amygdala similarly to cognitive reappraisal. We found that a standard 2-back working memory task indeed systematically downregulates the amygdala and that deactivated clusters strongly overlap with those observed during a cognitive reappraisal task. This finding may have consequences for the interpretation of the underlying mechanism of cognitive reappraisal: amygdala downregulation may be related to the cognitively demanding nature of reappraisal and not per se by the act of the reappraisal itself. Moreover, it raises the possibility of applying working memory tasks in clinical settings as an alternative emotion regulation strategy.
Assuntos
Mapeamento Encefálico , Memória de Curto Prazo , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Regulação para Baixo , Emoções/fisiologia , Humanos , Imageamento por Ressonância Magnética , Memória de Curto Prazo/fisiologiaRESUMO
Susceptibility to stress-related psychopathology is associated with reduced expression of the serotonin transporter (5-HTT), particularly in combination with stress exposure. Aberrant physiological and neuronal responses to threat may underlie this increased vulnerability. Here, implementing a cross-species approach, we investigated the association between 5-HTT expression and the neural correlates of fear bradycardia, a defensive response linked to vigilance and action preparation. We tested this during threat anticipation induced by a well-established fear conditioning paradigm applied in both humans and rodents. In humans, we studied the effect of the common 5-HTT-linked polymorphic region (5-HTTLPR) on bradycardia and neural responses to anticipatory threat during functional magnetic resonance imaging scanning in healthy volunteers (n = 104). Compared with homozygous long-allele carriers, the 5-HTTLPR short-allele carriers displayed an exaggerated bradycardic response to threat, overall reduced activation of the medial prefrontal cortex (mPFC), and increased threat-induced connectivity between the amygdala and periaqueductal gray (PAG), which statistically mediated the effect of the 5-HTTLPR genotype on bradycardia. In parallel, 5-HTT knockout (KO) rats also showed exaggerated threat-related bradycardia and behavioral freezing. Immunohistochemistry indicated overall reduced activity of glutamatergic neurons in the mPFC of KO rats and increased activity of central amygdala somatostatin-positive neurons, putatively projecting to the PAG, which-similarly to the human population-mediated the 5-HTT genotype's effect on freezing. Moreover, the ventrolateral PAG of KO rats displayed elevated overall activity and increased relative activation of CaMKII-expressing projection neurons. Our results provide a mechanistic explanation for previously reported associations between 5-HTT gene variance and a stress-sensitive phenotype.
Assuntos
Bradicardia/metabolismo , Medo/fisiologia , Reação de Congelamento Cataléptica/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina , Estresse Psicológico/metabolismo , Adulto , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/fisiologia , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Transgênicos , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismoRESUMO
It has recently been shown that acute stress affects the allocation of neural resources between large-scale brain networks, and the balance between the executive control network and the salience network in particular. Maladaptation of this dynamic resource reallocation process is thought to play a major role in stress-related psychopathology, suggesting that stress resilience may be determined by the retained ability to adaptively reallocate neural resources between these two networks. Actively training this ability could hence be a potentially promising way to increase resilience in individuals at risk for developing stress-related symptomatology. Using real-time functional Magnetic Resonance Imaging, the current study investigated whether individuals can learn to self-regulate stress-related large-scale network balance. Participants were engaged in a bidirectional and implicit real-time fMRI neurofeedback paradigm in which they were intermittently provided with a visual representation of the difference signal between the average activation of the salience and executive control networks, and tasked with attempting to self-regulate this signal. Our results show that, given feedback about their performance over three training sessions, participants were able to (1) learn strategies to differentially control the balance between SN and ECN activation on demand, as well as (2) successfully transfer this newly learned skill to a situation where they (a) did not receive any feedback anymore, and (b) were exposed to an acute stressor in form of the prospect of a mild electric stimulation. The current study hence constitutes an important first successful demonstration of neurofeedback training based on stress-related large-scale network balance - a novel approach that has the potential to train control over the central response to stressors in real-life and could build the foundation for future clinical interventions that aim at increasing resilience.
Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neurorretroalimentação/métodos , Estresse Psicológico/diagnóstico por imagem , Adulto , Função Executiva , Feminino , Humanos , Aprendizagem/fisiologia , Masculino , Autocontrole , Adulto JovemRESUMO
BACKGROUND: An adaptive neural stress response is essential to adequately cope with a changing environment. It was previously argued that sympathetic/noradrenergic activity during acute stress increases salience network (SN) connectivity and reduces executive control network (ECN) connectivity in healthy controls, with opposing effects in the late aftermath of stress. Altered temporal dynamics of these networks in response to stress are thought to play a role in the development of psychopathology in vulnerable individuals. METHODS: We exposed male healthy controls (n = 40, mean age = 33.9) and unaffected siblings of schizophrenia patients (n = 39, mean age = 33.2) to the stress or control condition of the trier social stress test and subsequently investigated resting state functional connectivity of the SN and ECN directly after and 1.5 h after stress. RESULTS: Acute stress resulted in increased functional connectivity within the SN in healthy controls, but not in siblings (group × stress interaction pfwe < 0.05). In the late aftermath of stress, stress reduced functional connectivity within the SN in both groups. Moreover, we found increased functional connectivity between the ECN and the cerebellum in the aftermath of stress in both healthy controls and siblings of schizophrenia patients. CONCLUSIONS: The results show profound differences between siblings of schizophrenia patients and controls during acute stress. Siblings lacked the upregulation of neural resources necessary to quickly and adequately cope with a stressor. This points to a reduced dynamic range in the sympathetic response, and may constitute a vulnerability factor for the development of psychopathology in this at-risk group.
Assuntos
Adaptação Psicológica/fisiologia , Vias Neurais/fisiopatologia , Esquizofrenia/fisiopatologia , Estresse Fisiológico , Estresse Psicológico/fisiopatologia , Adulto , Encéfalo/fisiopatologia , Humanos , Hidrocortisona/análise , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Psicologia do Esquizofrênico , Irmãos , Regulação para CimaRESUMO
Using contextual information to predict aversive events is a critical ability that protects from generalizing fear responses to safe contexts. Animal models have demonstrated the importance of spatial context representations within the hippocampal formation in contextualization of fear learning. The ventromedial prefrontal cortex (vmPFC) is known to play an important role in safety learning, possibly also through the incorporation of context information. However, if contextual representations are related to context-dependent expression of fear memory in humans remains unclear. Twenty-one healthy participants underwent functional MRI combined with a cue-context conditioning paradigm within a self-navigated virtual reality environment. The environment included two buildings (Threat and Safe context), which had distinct features outside but were identical inside. Within each context, participants saw two cues (CS+, CS-). The CS+ was consistently (100% reinforcement rate) paired with an electric shock in the Threat context, but never in the Safe context. The CS- was never paired with a shock. We found robust differential skin conductance responses (SCRs; CS+ â> âCS-) in the Threat context, but also within the Safe context, indicating fear generalization. Within the Safe context, vmPFC responses to the CS+ were larger than those in the Threat context. We furthermore found environment-specific representations for the two contexts in the training paradigm (i.e., before conditioning took place) in the hippocampus to be related to fear expression and generalization. Namely, participants with a weak context representation (z-scoreâ¯<â¯1.65) showed stronger fear generalization compared to participants with a strong context representation (z-scoreâ¯>â¯1.65). Thus, a weak neural representation strength of spatial context may explain overgeneralization of memory to safe contexts. In addition, our findings demonstrate that context-dependent regulation of fear expression engages ventromedial prefrontal pathways suggesting this involves a similar mechanism that is known to be involved in retrieval of extinction memory.
Assuntos
Condicionamento Clássico/fisiologia , Medo/fisiologia , Neuroimagem Funcional , Resposta Galvânica da Pele/fisiologia , Generalização Psicológica/fisiologia , Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , Comportamento Espacial/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Percepção Espacial/fisiologia , Máquina de Vetores de Suporte , Realidade Virtual , Adulto JovemRESUMO
Improving extinction learning is essential to optimize psychotherapy for persistent fear-related disorders. In two independent studies (both n = 24), we found that goal-directed eye movements activate a dorsal frontoparietal network and transiently deactivate the amygdala (η p2 = 0.17). Connectivity analyses revealed that this downregulation potentially engages a ventromedial prefrontal pathway known to be involved in cognitive regulation of emotion. Critically, when eye movements followed memory reactivation during extinction learning, it reduced spontaneous fear recovery 24 h later (η p2 = 0.21). Stronger amygdala deactivation furthermore predicted a stronger reduction in subsequent fear recovery after reinstatement (r = 0.39). In conclusion, we show that extinction learning can be improved with a noninvasive eye-movement intervention that triggers a transient suppression of the amygdala. Our finding that another task which taxes working memory leads to a similar amygdala suppression furthermore indicates that this effect is likely not specific to eye movements, which is in line with a large body of behavioral studies. This study contributes to the understanding of a widely used treatment for traumatic symptoms by providing a parsimonious account for how working-memory tasks and goal-directed eye movements can enhance extinction-based psychotherapy, namely through neural circuits (e.g., amygdala deactivation) similar to those that support cognitive control of emotion.SIGNIFICANCE STATEMENT Fear-related disorders represent a significant burden on individual sufferers and society. There is a high need to optimize treatment, in particular via noninvasive means. One potentially effective intervention is execution of eye movements following trauma recall. However, a neurobiological understanding of how eye movements reduce traumatic symptoms is lacking. We demonstrate that goal-directed eye-movements, like working-memory tasks, deactivate the amygdala, the core neural substrate of fear learning. Effective connectivity analyses revealed amygdala deactivation potentially engaged dorsolateral and ventromedial prefrontal pathways. When applied during safety learning, this deactivation predicts a reduction in later fear recovery. These findings provide a parsimonious and mechanistic account of how behavioral manipulations taxing working memory and suppressing amygdala activity can alter retention of emotional memories.
Assuntos
Tonsila do Cerebelo/fisiologia , Extinção Psicológica/fisiologia , Movimentos Oculares , Medo/fisiologia , Adulto , Mapeamento Encefálico , Condicionamento Clássico , Eletrochoque , Feminino , Lobo Frontal/fisiologia , Resposta Galvânica da Pele , Objetivos , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória de Curto Prazo , Vias Neurais/fisiologia , Lobo Parietal/fisiologia , Adulto JovemRESUMO
Rapid detection of threats has been proposed to rely on automatic processing of their coarse visual features. However, it remains unclear whether such a mechanism is restricted to detection of threat cues, or whether it reflects a broader sensitivity to even neutral coarse visual information features during states of threat. We used a backward masking task in which participants discriminated the orientation of subliminally presented low (3â¯cpd) and high (6â¯cpd) spatial frequency gratings, under threat (of shock) and safe conditions. Visual awareness of the gratings was assessed objectively using an additional localization task. When participants were unaware of the gratings, above chance and improved discrimination of low-spatial frequency gratings was observed under threat compared to safe trials. These findings demonstrate unconscious processing of neutral coarse visual information during threat state, supporting the view that automatic threat detection may rely on a general facilitation of coarse features irrespective of threat content.
Assuntos
Antecipação Psicológica , Sinais (Psicologia) , Aprendizagem por Discriminação , Medo , Inconsciente Psicológico , Percepção Visual , Nível de Alerta , Atenção , Conscientização , Eletrochoque , Feminino , Humanos , Limite de Detecção , Masculino , Orientação , Reconhecimento Visual de Modelos , Mascaramento Perceptivo , Estimulação Subliminar , Adulto JovemRESUMO
The ability to temporarily prioritize rapid and vigilant reactions over slower higher-order cognitive functions is essential for adaptive responding to threat. This reprioritization is believed to reflect shifts in resource allocation between large-scale brain networks that support these cognitive functions, including the salience and executive control networks. However, how changes in communication within and between such networks dynamically unfold as a function of threat-related arousal remains unknown. To address this issue, we collected functional MRI data and continuously assessed the heart rate from 120 healthy human adults as they viewed emotionally arousing and ecologically valid cinematographic material. We then developed an analysis method that tracks dynamic changes in large-scale network cohesion by quantifying the level of within-network and between-network interaction. We found a monotonically increasing relationship between heart rate, a physiological index of arousal, and within-network cohesion in the salience network, indicating that coordination of activity within the salience network dynamically tracks arousal. Strikingly, salience-executive control between-network cohesion peaked at moderate arousal. These findings indicate that at moderate arousal, which has been associated with optimal noradrenergic signaling, the salience network is optimally able to engage the executive control network to coordinate cognitive activity, but is unable to do so at tonically elevated noradrenergic levels associated with acute stress. Our findings extend neurophysiological models of the effects of stress-related neuromodulatory signaling at the cellular level to large-scale neural systems, and thereby explain shifts in cognitive functioning during acute stress, which may play an important role in the development and maintenance of stress-related mental disorders. SIGNIFICANCE STATEMENT: How does brain functioning change in arousing or stressful situations? Extant literature suggests that through global projections, arousal-related neuromodulatory changes can rapidly alter coordination of neural activity across brain-wide neural systems or large-scale networks. Since it is unknown how such processes unfold, we developed a method to dynamically track levels of within-network and between-network interaction. We applied this technique to human neuroimaging data acquired while participants watched realistic and emotionally arousing cinematographic material. Results demonstrate that cohesion within the salience network monotonically increases with arousal, while cohesion of this network with the executive control network peaks at moderate arousal. Our findings explain how cognitive performance shifts as a function of arousal, and provide new insights into vulnerability for stress-related psychopathology.
Assuntos
Nível de Alerta/fisiologia , Encéfalo/fisiologia , Função Executiva/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Adulto , Humanos , Masculino , Adulto JovemRESUMO
Memory recall is facilitated when retrieval occurs in the original encoding context. This context dependency effect likely results from the automatic binding of central elements of an experience with contextual features (i.e., memory "contextualization") during encoding. However, despite a vast body of research investigating the neural correlates of explicit associative memory, the neural interactions during encoding that predict implicit context-dependent memory remain unknown. Twenty-six participants underwent fMRI during encoding of salient stimuli (faces), which were overlaid onto unique background images (contexts). To index subsequent context-dependent memory, face recognition was tested either in intact or rearranged contexts, after scanning. Enhanced face recognition in intact relative to rearranged contexts evidenced successful memory contextualization. Overall subsequent memory effects (brain activity predicting whether items were later remembered vs. forgotten) were found in the left inferior frontal gyrus (IFG) and right amygdala. Effective connectivity analyses showed that stronger context-dependent memory was associated with stronger coupling of the left IFG with face- and place-responsive areas, both within and between participants. Our findings indicate an important role for the IFG in integrating information across widespread regions involved in the representation of salient items and contextual features.
Assuntos
Memória/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Córtex Pré-Frontal/fisiologia , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Adulto JovemRESUMO
An adaptive response to threat requires optimized detection of critical sensory cues. This optimization is thought to be aided by freezing - an evolutionarily preserved defensive state of immobility characterized by parasympathetically mediated fear bradycardia and regulated by the amygdala-periaqueductal grey (PAG) circuit. Behavioral observations in humans and animals have suggested that freezing is also a state of enhanced visual sensitivity, particularly for coarse visual information, but the underlying neural mechanisms remain unclear. We induced a freezing-like state in healthy volunteers using threat of electrical shock and measured threat-related changes in both stimulus-independent (baseline) and stimulus-evoked visuocortical activity to low-vs. high-spatial frequency gratings, using functional MRI. As measuring immobility is not feasible in MRI environments, we used fear bradycardia and amygdala-PAG coupling in inferring a freezing-like state. An independent functional localizer and retinotopic mapping were used to assess the retinotopic specificity of visuocortical modulations. We found a threat-induced increase in baseline (stimulus-independent) visuocortical activity that was retinotopically nonspecific, which was accompanied by increased connectivity with the amygdala. A positive correlation between visuocortical activity and fear bradycardia (while controlling for sympathetic activation), and a concomitant increase in amygdala-PAG connectivity, confirmed the specificity of these findings for the parasympathetically dominated freezing-like state. Visuocortical responses to gratings were retinotopically specific, but did not differ between threat and safe conditions across participants. However, individuals who exhibited better discrimination of low-spatial frequency stimuli showed reduced stimulus-evoked V1 responses under threat. Our findings suggest that a defensive state of freezing involves an integration of preparatory defensive and perceptual changes which may be regulated by a common mechanism involving the amygdala.
Assuntos
Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Reação de Congelamento Cataléptica/fisiologia , Córtex Visual/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Substância Cinzenta Periaquedutal/fisiologia , Adulto JovemRESUMO
Stress-related disorders, e.g., anxiety and depression, are characterized by decreased top-down control for distracting information, as well as a memory bias for threatening information. However, it is unclear how acute stress biases mnemonic encoding and leads to prioritized storage of threat-related information even if outside the focus of attention. In the current study, healthy adults (Nâ¯=â¯53, all male) were randomly assigned to stress induction using the socially evaluated cold-pressor test (SECPT) or a control condition. Participants performed a task in which they were required to identify a target letter within a string of letters that were either identical to the target and thereby facilitating detection (low distractor load) or mixed with other letters to complicate the search (high load). Either a fearful or neutral face was presented on the background, outside the focus of attention. Twenty-four hours later, participants were asked to perform a surprise recognition memory test for those background faces. Stress induction resulted in increased cortisol and negative subjective mood ratings. Stress did not affect visual search performance, however, participants in the stress group showed stronger memory compared to the control group for fearful faces in the low attentional load condition. Critically, the stress induced memory bias was accompanied by decoupling between amygdala and DLFPC during encoding, which may represent a mechanism for decreased ability to filter task-irrelevant threatening background information. The current study provides a potential neural account for how stress can produce a negative memory bias for threatening information even if presented outside the focus of attention. Despite of an adaptive advantage for survival, such tendencies may ultimately also lead to generalized fear, a possibility requiring additional investigation.
Assuntos
Tonsila do Cerebelo/fisiopatologia , Memória/fisiologia , Córtex Pré-Frontal/fisiopatologia , Estresse Psicológico/fisiopatologia , Adulto , Atenção/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiopatologiaRESUMO
After encoding, memories undergo a process of consolidation that determines long-term retention. For conditioned fear, animal models postulate that consolidation involves reactivations of neuronal assemblies supporting fear learning during postlearning "offline" periods. However, no human studies to date have investigated such processes, particularly in relation to long-term expression of fear. We tested 24 participants using functional MRI on 2 consecutive days in a fear conditioning paradigm involving 1 habituation block, 2 acquisition blocks, and 2 extinction blocks on day 1, and 2 re-extinction blocks on day 2. Conditioning blocks were preceded and followed by 4.5-min rest blocks. Strength of spontaneous recovery of fear on day 2 served as a measure of long-term expression of fear. Amygdala connectivity primarily with hippocampus increased progressively during postacquisition and postextinction rest on day 1. Intraregional multi-voxel correlation structures within amygdala and hippocampus sampled during a block of differential fear conditioning furthermore persisted after fear learning. Critically, both these main findings were stronger in participants who exhibited spontaneous recovery 24 h later. Our findings indicate that neural circuits activated during fear conditioning exhibit persistent postlearning activity that may be functionally relevant in promoting consolidation of the fear memory.
Assuntos
Vias Aferentes/fisiologia , Tonsila do Cerebelo/fisiologia , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Hipocampo/fisiologia , Vigília/fisiologia , Adolescente , Adulto , Tonsila do Cerebelo/diagnóstico por imagem , Eletrochoque , Medo/psicologia , Feminino , Resposta Galvânica da Pele/fisiologia , Frequência Cardíaca/fisiologia , Hipocampo/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Luminosa , Pupila/fisiologia , Respiração , Descanso , Estatística como Assunto , Adulto JovemRESUMO
Emotionally arousing experiences are typically well remembered not only due to immediate effects at encoding, but also through further strengthening of subsequent consolidation processes. A large body of research shows how neuromodulatory systems promote synaptic consolidation. However, how emotionally arousing experiences alter systems-level interactions, presumably a consequence of modifications at a synaptic level, remains unclear. Animal models predict that memory traces are maintained by spontaneous reactivations across hippocampal-neocortical circuits during "offline" periods such as post-learning rest, and suggest this might be stronger for emotional memories. The present study was designed to test this hypothesis in humans using functional Magnetic Resonance Imaging. Participants underwent a two-category localizer paradigm followed by a categorical differential delay fear conditioning paradigm interleaved with blocks of awake rest. Counterbalanced across participants, exemplars of one category (CS+), but not the other (CS-), were paired with mild electrical shocks. Fear recall (differential conditioned pupil dilation) was tested 24h later. Analyses of the localizer paradigm replicate earlier work showing category-specific response patterns in neocortical higher-order visual regions. Critically, we show that during post-learning rest, spontaneous reactivation of these neocortical patterns was stronger for the CS+ than the CS- category. Furthermore, hippocampal connectivity with the regions exhibiting these reactivations predicted strength of fear recall 24h later. We conclude that emotional arousal during learning promotes spontaneous post-learning reactivation of neocortical representations of recent experiences, which leads to better memory when coinciding with hippocampal connectivity. Our findings reveal a systems-level mechanism that may explain the persistence of long-term memory for emotional experiences.
Assuntos
Emoções , Hipocampo/fisiologia , Rememoração Mental/fisiologia , Neocórtex/fisiologia , Adulto , Mapeamento Encefálico , Condicionamento Clássico , Eletrochoque , Medo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Descanso , Adulto JovemRESUMO
Mather and colleagues postulate that norepinephrine promotes selective processing of emotionally salient information through local "hotspots" where norepinephrine release interacts with glutamatergic activity. However, findings in rodents and humans indicate that norepinephrine is ineffective in modulating mnemonic processes in the absence of a functional amygdala. We therefore argue that emphasis should shift toward modulatory effects of amygdala-driven changes at the network level.
Assuntos
Tonsila do Cerebelo/fisiologia , Nível de Alerta , Emoções , Memória , Humanos , Norepinefrina/fisiologiaRESUMO
Our empathetic abilities allow us to feel the pain of others. This phenomenon of vicarious feeling arises because the neural circuitry of feeling pain and seeing pain in others is shared. The neuropeptide oxytocin (OXT) is considered a robust facilitator of empathy, as intranasal OXT studies have repeatedly been shown to improve cognitive empathy (e.g. mind reading and emotion recognition). However, OXT has not yet been shown to increase neural empathic responses to pain in others, a core aspect of affective empathy. Effects of OXT on empathy for pain are difficult to predict, because OXT evidently has pain-reducing properties. Accordingly, OXT might paradoxically decrease empathy for pain. Here, using functional neuroimaging we show robust activation in the neural circuitry of pain (insula and sensorimotor regions) when subjects observe pain in others. Crucially, this empathy-related activation in the neural circuitry of pain is strongly reduced after intranasal OXT, specifically in the left insula. OXT on the basis of our neuroimaging data thus remarkably decreases empathy for pain, but further research including behavioral measures is necessary to draw definite conclusions.