Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Evol ; 12(8): e9167, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35949527

RESUMO

The abundant centre model (ACM) predicts that the suitability of environmental conditions for a species decreases from the centre of its distribution toward its range periphery and, consequently, its populations will become scarcer, smaller and more isolated, resulting in lower genetic diversity and increased differentiation. However, little is known about whether genetic diversity shows similar patterns along elevational and latitudinal gradients with similar changes in important environmental conditions. Using microsatellite markers, we studied the genetic diversity and structure of 20 populations each of Anthyllis vulneraria along elevational gradients in the Alps from the valleys to the elevational limit (2500 m) and along a latitudinal gradient (2500 km) from Central Europe to the range margin in northern Scandinavia. Both types of gradients corresponded to an 11.5°C difference in mean annual temperature. Genetic diversity strongly declined and differentiation increased with latitude in line with the predictions of the ACM. However, as population size did not decline with latitude and genetic diversity was not related to population size in A. vulneraria, this pattern is not likely to be due to less favorable conditions in the North, but due to serial founder effects during the post-glacial recolonization process. Genetic diversity was not related to elevation, but we found significant isolation by distance along both gradients, although the elevational gradient was shorter by orders of magnitude. Subarctic populations differed genetically from alpine populations indicating that the northern populations did not originate from high elevational Alpine ones. Our results support the notion that postglacial latitudinal colonization over large distances resulted in a larger loss of genetic diversity than elevational range shifts. The lack of genetic diversity in subarctic populations may threaten their long-term persistence in the face of climate change, whereas alpine populations could benefit from gene flow from low-elevation populations.

2.
Ecol Evol ; 12(11): e9462, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36415877

RESUMO

Formerly common plant species are expected to be particularly susceptible to recent habitat fragmentation. We studied the population genetics of 19 recently fragmented Saxifraga granulata populations (max. distance 61 km) in Luxembourg and neighboring Germany using RAPD markers and a common garden experiment. We assessed (1) the relationships between plant fitness, quantitative genetic variation, molecular genetic variation, and population size; and (2) the relative importance of genetic drift and selection in shaping genetic variation. Molecular genetic diversity was high but did not correlate with population size, habitat conditions, or plant performance. Genetic differentiation was low (F ST = 0.079 ± 0.135), and there was no isolation by distance. Longevity, clonality, and the long-lived seed bank of S. granulata may have prevented strong genetic erosion and genetic differentiation among populations. However, genetic distinctness increased with decreasing genetic diversity indicating that random genetic drift occurred in the studied populations. Quantitative and molecular genetic variations were correlated, and their differentiation (Q ST vs. F ST) among S. granulata populations was similar, suggesting that mainly random processes have shaped the quantitative genetic differentiation among populations. However, pairwise quantitative genetic distances increased with geographic and climatic distances, even when adjusted for molecular genetic distances, indicating diversifying selection. Our results indicate that long-lived clonal species may be buffered at least temporarily against the negative effects of fragmentation. The relationship between quantitative genetic and geographic distance may be a more sensitive indicator of selection than Q ST-F ST differences.

3.
Sci Rep ; 12(1): 6553, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449180

RESUMO

LAMP assays are becoming increasingly popular in the field of invasive species detection but are still underused in eDNA-based monitoring. Here, we propose a LAMP assay designed to detect the North American crayfish species Pacifastacus leniusculus in water samples from streams. The presence of P. leniusculus was detected through this new LAMP assay in all but one of the nine sites sampled. No correlation was found between ddPCR absolute concentration measurements and the number of LAMP-positive technical replicates. However, we showed that using dependent technical replicates could significantly enhance the detection sensitivity of the LAMP assay. Applied to other assays, it could improve sensitivity and thus allow for a more efficient use of eDNA-based LAMP assays for invasive species detection in aquatic ecosystems.


Assuntos
Astacoidea , DNA Ambiental , Animais , Astacoidea/genética , Ecossistema , Espécies Introduzidas , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Rios
4.
PLoS One ; 17(11): e0275363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36383571

RESUMO

ddPCR is becoming one of the most widely used tool in the field of eDNA-based aquatic monitoring. Although emulsion PCR used in ddPCR confers a partial mitigation to inhibition due to the high number of reactions for a single sample (between 10K and 20K), it is not impervious to it. Our results showed that inhibition impacts the amplitude of fluorescence in positive droplets with a different intensity among rivers. This signal fluctuation could jeopardize the use of a shared threshold among samples from different origin, and thus the accurate assignment of the positive droplets which is particularly important for low concentration samples such as eDNA ones: amplification events are scarce, thus their objective discrimination as positive is crucial. Another issue, related to target low concentration, is the artifactual generation of high fluorescence droplets ('stars'). Indeed, these could be counted as positive with a single threshold solution, which in turn could produce false positive and incorrect target concentration assessments. Approximating the positive and negative droplets distribution as normal, we proposed here a double threshold method accounting for both high fluorescence droplets ('stars') and PCR inhibition impact in delineating positive droplets clouds. In the context of low concentration template recovered from environmental samples, the application of this method of double threshold establishment could allow for a consistent sorting of the positive and negative droplets throughout ddPCR data generated from samples with varying levels of inhibitor contents. Due to low concentrations template and inhibition effects, Quantasoft software produced an important number of false negatives and positive comparatively to the double threshold method developed here. This case study allowed the detection of the invasive crayfish P. leniusculus in 32 out of 34 sampled sites from two main rivers (Alzette and Sûre) and five of their tributaries (Eisch, Attert, Mamer, Wiltz and Clerve).


Assuntos
Astacoidea , DNA Ambiental , Animais , Astacoidea/genética , Luxemburgo , Análise de Dados , DNA/genética , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA