Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Naturwissenschaften ; 109(6): 57, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36342544

RESUMO

Burrow builders are often classified as ecosystem engineers because their digging activities regulate the availability of resources for other organisms. As antlion larvae prefer to construct their traps in bare sandy or loose soil, they could benefit from burrowing activities. We investigated the role of burrow builders as ecosystem engineers for antlions (Myrmeleontidae) in a tropical semideciduous forest in Mexico. The number of traps of antlion larvae was recorded on 30 sampling quadrats (45 cm) at the entrance of burrows (of unidentified builders) and on 30 paired off-burrow quadrats. Additionally, the percentage of bare soil was estimated for the 60 quadrats sampled. Of the 30 quadrats at the entrance of burrows, a total of 336 traps were recorded, with 21 (70%) of them having at least one trap, while for the 30 off-burrows quadrats, only two (6.6%) of them had traps, just three in total. The percentage of bare soil and the abundance of traps were significantly greater in quadrats at the entrance of burrows compared to quadrats without burrows. The abundance of traps at the entrance of burrows was positively affected by the percentage of bare soil. The few traps in the off-burrows quadrats suggested that, in addition to the limited bare soil, ground compactness probably limits the establishment of antlion larvae. Otherwise, when digging, burrow builders create small patches of bare sandy soils that are used by these insects. We concluded that the ecosystem engineering effect of burrow builders is an important structuring element for antlion populations in the tropical semideciduous forest studied.


Assuntos
Ecossistema , Florestas , Animais , Insetos , Solo , Larva/fisiologia
2.
Naturwissenschaften ; 107(5): 45, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001285

RESUMO

Many arthropods modify parts of plants through the construction of domiciles or by consuming plant tissues that, after abandoned, can be used as shelter by other arthropods in a facilitating interaction process. We examined, for the first time, the potential of leaf-rolling mites to indirectly influence arthropod communities in natural forests by providing shelter sites. In early June 2019, we found a high density of leaves of Amphitecna tuxtlensis (Bignoniaceae) rolled by an undetermined leaf-rolling mite species in a tropical rainforest, in Mexico. We tested whether the species richness, abundance, and colonization frequency of arthropods was greater in rolled compared with expanded leaves. We collected 5 rolled leaves and 5 fully expanded leaves from 15 A. tuxtlensis trees (N = 150 sampled leaves) and recorded all arthropods on each leaf. We recorded 1421 arthropods from 67 unique morphospecies. We found 39 individuals from 23 morphospecies of arthropods in expanded leaves, and 1382 individuals from 56 morphospecies in rolled leaves. Ants were the most abundant and frequent group and utilized the rolled leaves mainly as nesting sites; 1260 ant individuals were found in 30 nests from three species. Arthropod species richness, abundance, and colonization frequency were greater in rolled leaves compared with expanded leaves. We concluded that the ecosystem engineering effect of leaf-rolling mites may be an important structuring element for arthropod communities on plants through an increase of high quality food resources and shelter sites for other arthropods, as well as nesting sites for ants.


Assuntos
Artrópodes/fisiologia , Biodiversidade , Ácaros/fisiologia , Folhas de Planta , Animais , Ecossistema , México , Floresta Úmida
3.
J Insect Sci ; 19(3)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31234211

RESUMO

Evolution and radiation between insects and flowering plants are both opportunistic and obligatory when the former feeds on the reproductive structures of the latter, whereas direct and indirect effects can influence the fitness of individuals, populations, and plant communities. The Araceae family constitutes an important element of the tropical rainforest of the Neotropics, and its morphology and floral biology provide a remarkable system for studying trophic interactions with insects, including the Richardiidae flies (Diptera). We studied the trophic interactions of the aroid-fly system, assessing infestation rates under natural conditions over an annual cycle. In the Neotropical region, we discovered for the first time that seven aroid species became infested by four richardiid species: Beebeomyia tuxtlaensis Hernández-Ortiz and Aguirre with Dieffenbachia oerstedii Schott and D. wendlandii Schott; B. palposa (Cresson) with Xanthosoma robustum Schott; Beebeomyia sp.3. in association with Philodendron radiatum Schott, P. tripartitum (Jacq.) Schott, and P. sagittifolium Liebm.; while Sepsisoma sp. only infested Rhodospatha wendlandii Schott. Infestation rates differed significantly among hosts, but comparisons with morphological traits did not provide evidence of a causal factor of the infestation. In contrast, larval density and time of development both exhibited significant differences between hosts. The findings suggest the high specialization of the flies, and that intrinsic factors of the plants, such as the presence of secondary metabolites and their maturation periods, may influence their infestation rates.


Assuntos
Araceae , Dípteros , Animais , Comportamento Alimentar , Frutas , Larva , México , Clima Tropical
4.
J Econ Entomol ; 107(1): 11-28, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24665680

RESUMO

The North American Plant Protection Organization (NAPPO) is an organization comprising plant protection regulatory officials of the three signatory countries: the United States, Canada, and México. NAPPO develops Regional Standards for Phytosanitary Measures (RSPMs) as well as discussion papers on important issues related to plant protection. The Fruit Panel of NAPPO organized a Technical Assistance Group (TAG) to develop a discussion paper on the status of pest species of Rhagoletis (Diptera: Tephritidae) within the NAPPO countries. As regulations are developed to prevent the spread of these pests both within and outside of the NAPPO countries, it was important to understand the pest status of these species. This article reviews the basic biology, host range, distribution, potential to spread, management, and regulatory status of pest species of Rhagoletis within the NAPPO countries.


Assuntos
Produtos Agrícolas , Controle de Insetos/organização & administração , Tephritidae , Animais , América do Norte
5.
J Insect Sci ; 14: 189, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25368091

RESUMO

Seasonal dynamics of the capitula infested by Dictyotrypeta sp. and Rhynencina spilogaster (Steyskal) (Diptera: Tephritidae) was evaluated throughout the flowering cycle of their host plant the sunflower, Smallanthus maculatus (Cavanilles) Robinson (Asterales: Asteraceae). In central Veracruz, Mexico, along 16 consecutive weeks, a total of 1,017 mature capitula were collected, recording the presence and abundance of immature stages (larvae and pupae) and their related parasitoids. Both fly species were present throughout the entire season, with overall infestation of 51.5% of the capitula examined. However, Dictyotrypeta sp. infested 11.3%, representing about one-fifth of them, and R. spilogaster was most abundant infesting four times as many capitula (42.9%), whereas both species were found together in only 2.6% of the capitula examined. Based on the temporal occurrence of larvae and pupae into flower heads as well as their associated parasitoids and times of emergence, Dictyotrypeta sp. had two yearly generations, and it seems that the second generation could enter a seasonal diapause; in contrast, R. spilogaster was a univoltine species that entered diapause that lasted until the next year.


Assuntos
Asteraceae/fisiologia , Tephritidae/fisiologia , Tephritidae/parasitologia , Vespas/fisiologia , Animais , Inflorescência/fisiologia , Larva/crescimento & desenvolvimento , Larva/parasitologia , Larva/fisiologia , México , Pupa/crescimento & desenvolvimento , Pupa/parasitologia , Pupa/fisiologia , Estações do Ano , Especificidade da Espécie , Tephritidae/crescimento & desenvolvimento
6.
Zootaxa ; 3786: 593-9, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24869557

RESUMO

Neotraginops mexicanus n. sp. is described and illustrated based on specimens from Mexico and Belize, representing the second known species for the genus. Additional records for Odinia coronata Sabrosky from Mexico and Nicaragua are provided.


Assuntos
Dípteros/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Animais , Belize , Dípteros/anatomia & histologia , Ecossistema , Feminino , Masculino , México
7.
Neotrop Entomol ; 51(4): 499-513, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35575877

RESUMO

Insect life cycles are short-term and therefore sensitive to immediate changes triggered by climate, vegetation structure, or land use management; hence, the insect populations shape the communities and functional relationships in tropical forests. In this study, we hypothesized that seasonal variations of the dipteran families respond in different ways to changes of weather conditions, thereby affecting their population dynamics. In a one-hectare plot, we surveyed the fly community inhabiting the understory of a Neotropical rainforest. Over a yearly cycle, we used three Malaise traps operated continuously for 365 days and recorded a total of 68,465 fly specimens belonging to 48 families of Diptera, 15 of which were most abundant, accounting for 99.2% of all sampled individuals. The results of the trapping frequency indices (TFIs) exhibited significant population fluctuations in 12 of the 15 most abundant families, which were particularly correlated with temperature or precipitation. Based on such variations, we identified four seasonal patterns as follows: (i) Spring-Autumn bimodal pattern (Cecidomyiidae, Sciaridae, Phoridae, Stratiomyidae); (ii) Spring pattern (Mycetophilidae, Dolichopodidae, Ceratopogonidae); (iii) Autumn pattern (Chironomidae, Psychodidae); (iv) Winter pattern (Empididae, Tipulidae, Ditomyiidae). From a functional perspective, we found the prevalence of families with saprophagous larvae, in addition to phytophagous, fungivores, and predacious. Our results suggest a key role played by the Diptera community on structuring the functional clusters, both in terms of taxonomic composition and on seasonal shifts of abundance, thus influencing the dynamic processes of nutrient cycling in the understory.


Assuntos
Dípteros , Psychodidae , América , Animais , Clima , Floresta Úmida , Estações do Ano
8.
Insects ; 11(8)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756345

RESUMO

Over a two-year period, we surveyed natural areas of the Mayan rainforest in Quintana Roo, Mexico. We found 11 species of Anastrepha Schiner (Diptera: Tephritidae) infesting 25 species of fruits belonging to ten plant families. We report the first records of 10 host plant species of the genus Anastrepha, which include the first report of a plant family (Putranjivaceae) serving as host of Anastrepha fraterculus (Wiedemann) infesting Drypetes lateriflora (Sw.) Krug and Urb. (Putranjivaceae). Pouteria reticulata (Engl.) Eyma (Sapotaceae) was found, for the first time, to be infested by Anastrepha serpentina (Wiedemann) and by a new undescribed species of Anastrepha. We also report Casimiroa microcarpa Lundell (Rutaceae) as a possible ancestral host for the Mexican fruit fly, Anastrepha ludens (Loew), in Central America. The family Sapotaceae was the best-represented host group with three fruit fly species recovered: A. serpentina, an economically-important species, found in eight host plants, and A. hamata and A. sp. (new species). We recorded six species of koinobiont parasitoids: Doryctobracon areolatus Szepligeti, Utetes (Bracanastrepha) anastrephae Viereck, Opius hirtus Fisher, and Doryctobracon zeteki Musebeck, (all Braconidae), and Aganaspis pelleranoi (Brethés) and Odontosema anastrephae Borgmeier, (both Figitidae). All these parasitoid species represent at least a new report for their host plants. Of the whole parasitoid community, D. areolatus was the most important parasitoid species with 52.7% of presence in 12 host plant species, parasitizing six fruit fly species. The interaction between fruit flies and their parasitoids with host plants depends on fruit availability, which is crucial for the survival of each of these species. Conserving the landscape of the Mayan rainforest is important not only for species conservation, but also for the maintenance of fruit fly host plants in orchard agroecosystems in southeastern Mexico.

9.
Insects ; 10(11)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731690

RESUMO

The South American fruit fly Anastrepha fraterculus (Wiedemann) is a complex of cryptic species, the so-called "Anastrepha fraterculus complex", for which eight morphotypes are currently recognized. A previous analysis of ITS1 in samples of the Anastrepha fraterculus complex, while revealing high distinctiveness among samples from different localities of South America, Central America, and Mexico, no direct association was made between sequence type and morphotype. In the present report, a correlated analysis of morphometry and ITS1 data involved individuals belonging to the same population samples. Although showing a low level of intra-populational nucleotide variability, the ITS1 analysis indicated numerous inter-population sequence type variants. Morphotypes identified by morphometric analysis based on female wing shape were highly concordant with ITS1 genetic data. The correlation of genetic divergence and morphological differences among the tested samples gives strong evidence of a robust dataset, thereby indicating the existence of various taxonomic species within the A. fraterculus complex. However, the data revealed genetic and morphological variations in some regions, suggesting that further analysis is still required for some geographic regions.

10.
Insects ; 10(8)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443212

RESUMO

Insect-aroid interaction studies have focused largely on pollination systems; however, few report trophic interactions with other herbivores. This study features the endophagous insect community in reproductive aroid structures of a tropical rainforest of Mexico, and the shifting that occurs along an altitudinal gradient and among different hosts. In three sites of the Los Tuxtlas Biosphere Reserve in Mexico, we surveyed eight aroid species over a yearly cycle. The insects found were reared in the laboratory, quantified and identified. Data were analyzed through species interaction networks. We recorded 34 endophagous species from 21 families belonging to four insect orders. The community was highly specialized at both network and species levels. Along the altitudinal gradient, there was a reduction in richness and a high turnover of species, while the assemblage among hosts was also highly specific, with different dominant species. Our findings suggest that intrinsic plant factors could influence their occupation, and that the coexistence of distinct insect species in the assemblage could exert a direct or indirect influence on their ability to colonize such resources.

11.
Syst Appl Microbiol ; 40(1): 59-67, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27914738

RESUMO

Infection by Wolbachia was described previously in eleven species of Anastrepha fruit flies some of which are important pests of fruticulture. One such species is the nominal Anastrepha fraterculus, the South American fruit fly, which actually comprises a complex of cryptic species. The suggestions of using Wolbachia for the control of these pest species, make imperative a more precise characterization of the existing strains of the bacteria. In this study, population samples of the A. fraterculus complex from Brazil, Argentina, Peru, Ecuador, Colombia, Guatemala and Mexico were analyzed for Wolbachia infection. The bacteria were genotyped by the MLST and WSP Typing methodologies. All samples were infected with Wolbachia of supergroup "A". For each of the five MLST genes, unique as well as already known alleles were detected. Nineteen sequence types for the concatenated sequences of the five MLST genes, and twenty wsp alleles were found in the samples. Host-specific haplotypes, shared strains among distinct hosts, and more than one strain of Wolbachia were found in some population samples. Recombination among the MLST genes and intragenic recombination between wsp haplotypes was rare. Phylogenetic analysis showed a great similarity among the Wolbachia strains in the A. fraterculus complex. However, some strains of Wolbachia are found throughout the Neotropical Region and there are specific strains in determined geographical areas.


Assuntos
Variação Genética , Tephritidae/microbiologia , Wolbachia/classificação , Wolbachia/isolamento & purificação , América , Animais , Análise por Conglomerados , Genótipo , Tipagem Molecular , Filogenia , Recombinação Genética , Clima Tropical , Wolbachia/genética
12.
Zookeys ; (540): 41-59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26798253

RESUMO

The occurrence of cryptic species among economically important fruit flies strongly affects the development of management tactics for these pests. Tools for studying cryptic species not only facilitate evolutionary and systematic studies, but they also provide support for fruit fly management and quarantine activities. Previous studies have shown that the South American fruit fly, Anastrepha fraterculus, is a complex of cryptic species, but few studies have been performed on the morphology of its immature stages. An analysis of mandible shape and linear morphometric variability was applied to third-instar larvae of five morphotypes of the Anastrepha fraterculus complex: Mexican, Andean, Ecuadorian, Peruvian and Brazilian-1. Outline geometric morphometry was used to study the mouth hook shape and linear morphometry analysis was performed using 24 linear measurements of the body, cephalopharyngeal skeleton, mouth hook and hypopharyngeal sclerite. Different morphotypes were grouped accurately using canonical discriminant analyses of both the geometric and linear morphometry. The shape of the mandible differed among the morphotypes, and the anterior spiracle length, number of tubules of the anterior spiracle, length and height of the mouth hook and length of the cephalopharyngeal skeleton were the most significant variables in the linear morphometric analysis. Third-instar larvae provide useful characters for studies of cryptic species in the Anastrepha fraterculus complex.

13.
Zookeys ; (540): 61-81, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26798254

RESUMO

The West Indian fruit fly, Anastrepha obliqua, is one of seven species of quarantine importance of its genus and is one of the most economically important fruit fly pests in Colombia. The taxonomic status of this species is a key issue for further implementation of any pest management program. Several molecular studies have shown enough variability within Anastrepha obliqua to suggest its taxonomic status could be revised; however, there are no morphological studies supporting this hypothesis. The aim of this work was to describe the morphological variability of Colombian populations of Anastrepha obliqua, comparing this variability with that of other samples from the Neotropics. Measurements were performed on individuals from 11 populations collected from different geographic Colombian localities and were compared with populations from Mexico (2), Dominica Island (1), Peru (1) and Brazil (2). Linear morphometric analyses were performed using 23 female morphological traits, including seven variables of the aculeus, three of the thorax, and six of the wing; seven ratios among them were also considered. Discriminant function analyses showed significant morphological differentiation among the Colombian populations, separating them into two groups. Furthermore, in the comparisons between Colombian samples with those from other countries, three clusters were observed. The possibility of finding more than one species within the nominal Anastrepha obliqua population is discussed.

14.
Zookeys ; (540): 95-124, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26798256

RESUMO

Previous morphometric studies based on linear measurements of female structures of the aculeus, mesonotum, and wing revealed the existence of seven morphotypes within the Anastrepha fraterculus cryptic species complex along the Neotropical Region. The current research followed linear and geometric morphometric approaches in 40 population samples of the nominal species Anastrepha fraterculus (Wiedemann) spread throughout the Meso-American and Pacific Neotropical dominions (including Mexico, Central America, Venezuela, Colombia, Ecuador, and Peru). The goals were to explore the phenotypic relationships of the morphotypes in these biogeographical areas; evaluate the reliability of procedures used for delimitation of morphotypes; and describe their current distribution. Findings determined that morphotypes previously recognized via the linear morphometrics were also supported by geometric morphometrics of the wing shape. In addition, we found an eighth morphotype inhabiting the highlands of Ecuador and Peru. Morphotypes are related into three natural phenotypic groups nominated as Mesoamerican-Caribbean lineage, Andean lineage, and Brazilian lineage. The hypothesis that lineages are not directly related to each other is discussed, supported by their large morphological divergence and endemicity in these three well-defined biogeographic areas. In addition, this hypothesis of the non-monophyly of the Anastrepha fraterculus complex is also supported by evidence from other authors based on molecular studies and the strong reproductive isolation between morphs from different lineages.

15.
Zookeys ; (540): 211-37, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26798261

RESUMO

The study of the species complex Anastrepha fraterculus (Af complex) in Brazil is especially important in a taxonomical, evolutionary and pest management context, because there are evidences that some of them may occur in sympatry. In this review, we analyzed the main results supporting evidences that three cryptic species occur in Brazil. The taxonomical and phylogenetic relationships based on eggshell morphology, adult morphometrics, as well as cytotaxonomy and genetic differentiations are discussed. We also review available information on sexual behavior including acoustic communication of males during courtship and sexual incompatibility; and chemical signals involved in the communication between sexes, with a special focus on sex pheromones. We examined the role of long- and short-range pheromones (male-produced volatiles and cuticular hydrocarbons, respectively), their implications in sexual isolation, and their possible use for chemotaxonomic differentiation of the putative species of the Af complex.

16.
J Econ Entomol ; 96(6): 1693-703, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14977105

RESUMO

Anastrepha fraterculus (Wiedemann) is recognized as a pest of citrus, apples, and blackberries in South America. In Mexico, it is mainly found in fruit of the family Myrtaceae and has never been reported infesting citrus. Here, we sought to determine whether females stemming from Mexican A. fraterculus populations (collected in the state of Veracruz) would lay eggs in 'Valencia' oranges and 'Ruby Red' grapefruit and, if so, whether larvae would hatch and develop. We worked under laboratory and seminatural conditions (i.e., gravid females released in fruit-bearing, bagged branches in a commercial citrus grove) and used Anastrepha ludens (Loew), a notorious pest of citrus, as a control species. Under laboratory conditions, A. ludens readily accepted both oranges and grapefruit as oviposition substrates, but A. fraterculus rarely oviposited in these fruit (but did so in guavas, a preferred host) and no larvae ever developed. Eggs were deposited in the toxic flavedo (A. fraterculus) and nontoxic albedo (A. ludens) regions. Field studies revealed that, as was the case in the laboratory, A. fraterculus rarely oviposited into oranges or grapefruit and that, when such was the case, either no larvae developed (oranges) or of the few (13) that developed and pupated (grapefruit), only two adults emerged that survived 1 and 3 d, respectively (5-17% of the time necessary to reach sexual maturity). In sharp contrast, grapefruit exposed to A. ludens yielded up to 937 pupae and adults survived for >6 mo. Therefore, the inability of Mexican A. fraterculus to successfully develop in citrus renders the status of Mexican A. fraterculus as a pest of citrus in Mexico as unsubstantiated.


Assuntos
Citrus paradisi , Citrus sinensis , Tephritidae/crescimento & desenvolvimento , Animais , Citrus paradisi/parasitologia , Citrus sinensis/parasitologia , Frutas/parasitologia , Larva/crescimento & desenvolvimento , Oviposição , Tephritidae/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA