Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Clin Sci (Lond) ; 134(3): 359-377, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31985010

RESUMO

Hypertensive cardiac hypertrophy (HCH) is a common cause of heart failure (HF), a major public health problem worldwide. However, the molecular bases of HCH have not been completely elucidated. Neuron-derived orphan receptor-1 (NOR-1) is a nuclear receptor whose role in cardiac remodelling is poorly understood. The aim of the present study was to generate a transgenic mouse over-expressing NOR-1 in the heart (TgNOR-1) and assess the impact of this gain-of-function on HCH. The CAG promoter-driven transgenesis led to viable animals that over-expressed NOR-1 in the heart, mainly in cardiomyocytes and also in cardiofibroblasts. Cardiomyocytes from TgNOR-1 exhibited an enhanced cell surface area and myosin heavy chain 7 (Myh7)/Myh6 expression ratio, and increased cell shortening elicited by electric field stimulation. TgNOR-1 cardiofibroblasts expressed higher levels of myofibroblast markers than wild-type (WT) cells (α 1 skeletal muscle actin (Acta1), transgelin (Sm22α)) and were more prone to synthesise collagen and migrate. TgNOR-1 mice experienced an age-associated remodelling of the left ventricle (LV). Angiotensin II (AngII) induced the cardiac expression of NOR-1, and NOR-1 transgenesis exacerbated AngII-induced cardiac hypertrophy and fibrosis. This effect was associated with the up-regulation of hypertrophic (brain natriuretic peptide (Bnp), Acta1 and Myh7) and fibrotic markers (collagen type I α 1 chain (Col1a1), Pai-1 and lysyl oxidase-like 2 (Loxl2)). NOR-1 transgenesis up-regulated two key genes involved in cardiac hypertrophy (Myh7, encoding for ß-myosin heavy chain (ß-MHC)) and fibrosis (Loxl2, encoding for the extracellular matrix (ECM) modifying enzyme, Loxl2). Interestigly, in transient transfection assays, NOR-1 drove the transcription of Myh7 and Loxl2 promoters. Our findings suggest that NOR-1 is involved in the transcriptional programme leading to HCH.


Assuntos
Cardiomegalia/genética , Cardiomegalia/patologia , Progressão da Doença , Regulação da Expressão Gênica , Miocárdio/patologia , Membro 3 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Angiotensina II , Animais , Biomarcadores/metabolismo , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/fisiopatologia , Colágeno/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Modelos Animais de Doenças , Eletrocardiografia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Humanos , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transcrição Gênica , Remodelação Ventricular
2.
Proc Natl Acad Sci U S A ; 113(46): E7250-E7259, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799555

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease caused by defective prelamin A processing, leading to nuclear lamina alterations, severe cardiovascular pathology, and premature death. Prelamin A alterations also occur in physiological aging. It remains unknown how defective prelamin A processing affects the cardiac rhythm. We show age-dependent cardiac repolarization abnormalities in HGPS patients that are also present in the Zmpste24-/- mouse model of HGPS. Challenge of Zmpste24-/- mice with the ß-adrenergic agonist isoproterenol did not trigger ventricular arrhythmia but caused bradycardia-related premature ventricular complexes and slow-rate polymorphic ventricular rhythms during recovery. Patch-clamping in Zmpste24-/- cardiomyocytes revealed prolonged calcium-transient duration and reduced sarcoplasmic reticulum calcium loading and release, consistent with the absence of isoproterenol-induced ventricular arrhythmia. Zmpste24-/- progeroid mice also developed severe fibrosis-unrelated bradycardia and PQ interval and QRS complex prolongation. These conduction defects were accompanied by overt mislocalization of the gap junction protein connexin43 (Cx43). Remarkably, Cx43 mislocalization was also evident in autopsied left ventricle tissue from HGPS patients, suggesting intercellular connectivity alterations at late stages of the disease. The similarities between HGPS patients and progeroid mice reported here strongly suggest that defective cardiac repolarization and cardiomyocyte connectivity are important abnormalities in the HGPS pathogenesis that increase the risk of arrhythmia and premature death.


Assuntos
Arritmias Cardíacas/fisiopatologia , Doença do Sistema de Condução Cardíaco/fisiopatologia , Progéria/fisiopatologia , Adolescente , Adulto , Animais , Arritmias Cardíacas/metabolismo , Cálcio/fisiologia , Doença do Sistema de Condução Cardíaco/metabolismo , Criança , Pré-Escolar , Conexina 43/metabolismo , Conexina 43/fisiologia , Feminino , Coração/fisiologia , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Metaloendopeptidases/genética , Metaloendopeptidases/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Lâmina Nuclear/fisiologia , Progéria/metabolismo , Retículo Sarcoplasmático/fisiologia , Adulto Jovem
3.
J Mol Cell Cardiol ; 99: 162-173, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27545043

RESUMO

MicroRNAs (miR) have considerable potential as therapeutic tools in cardiac diseases. Alterations in atrial miR are involved in the development of atrial fibrillation (AF), but the molecular mechanism underlying their contribution to atrial remodeling in chronic atrial fibrillation (CAF) is only partially understood. Here we used miR array to analyze the miR profile of atrial biopsies from sinus rhythm (SR) and CAF patients. qRT-PCR identified a distinctive CAF-miR signature and described conserved miR-208b upregulation in human and ovine AF atrial tissue. We used bioinformatics analysis to predict genes and signaling pathways as putative miR-208b targets, which highlighted genes from the cardiac muscle gene program and from canonical WNT, gap-junction and Ca2+ signaling networks. Results from analysis of miR-208b-overexpressing HL-1 atrial myocytes and from myocytes isolated from CAF patients showed that aberrant miR-208b levels reduced the expression and function of L-type Ca2+ channel subunits (CACNA1C and CACNB2) as well as the sarcoplasmic reticulum-Ca2+ pump SERCA2. These findings clearly pointed to CAF-specific upregulated miR-208b as an important mediator in Ca2+ handling impairment during atrial remodeling.


Assuntos
Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Cálcio/metabolismo , Átrios do Coração/citologia , Átrios do Coração/metabolismo , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Regiões 3' não Traduzidas , Animais , Fibrilação Atrial/fisiopatologia , Remodelamento Atrial , Sequência de Bases , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular , Doença Crônica , Conexina 43/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Átrios do Coração/fisiopatologia , Humanos , Miosinas/genética , Ligação Proteica , Interferência de RNA , RNA Mensageiro/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Ovinos , Proteínas Wnt/metabolismo
4.
Basic Res Cardiol ; 111(1): 5, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26611209

RESUMO

Atrial fibrillation (AF) has been associated with increased spontaneous calcium release from the sarcoplasmic reticulum and linked to increased adenosine A2A receptor (A2AR) expression and activation. Here we tested whether this may favor atrial arrhythmogenesis by promoting beat-to-beat alternation and irregularity. Patch-clamp and confocal calcium imaging was used to measure the beat-to-beat response of the calcium current and transient in human atrial myocytes. Responses were classified as uniform, alternating or irregular and stimulation of Gs-protein coupled receptors decreased the frequency where a uniform response could be maintained from 1.0 ± 0.1 to 0.6 ± 0.1 Hz; p < 0.01 for beta-adrenergic receptors and from 1.4 ± 0.1 to 0.5 ± 0.1 Hz; p < 0.05 for A2ARs. The latter was linked to increased spontaneous calcium release and after-depolarizations. Moreover, A2AR activation increased the fraction of non-uniformly responding cells in HL-1 myocyte cultures from 19 ± 3 to 51 ± 9 %; p < 0.02, and electrical mapping in perfused porcine atria revealed that adenosine induced electrical alternans at longer cycle lengths, doubled the fraction of electrodes showing alternation, and increased the amplitude of alternations. Importantly, protein kinase A inhibition increased the highest frequency where uniform responses could be maintained from 0.84 ± 0.12 to 1.86 ± 0.11 Hz; p < 0.001 and prevention of A2AR-activation with exogenous adenosine deaminase selectively increased the threshold from 0.8 ± 0.1 to 1.2 ± 0.1 Hz; p = 0.001 in myocytes from patients with AF. In conclusion, A2AR-activation promotes beat-to-beat irregularities in the calcium transient in human atrial myocytes, and prevention of A2AR activation may be a novel means to maintain uniform beat-to-beat responses at higher beating frequencies in patients with atrial fibrillation.


Assuntos
Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Células Cultivadas , Humanos , Microscopia Confocal , Técnicas de Patch-Clamp , Sus scrofa
5.
J Mol Cell Cardiol ; 85: 25-36, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25968337

RESUMO

The maintenance of sarcoplasmic reticulum Ca(2+) ATPase (SERCA2) activity is crucial for cardiac function and SERCA2 is dramatically reduced in the heart exposed to hypoxic/ischemic conditions. Previous work from our group showed that hypoxia upregulates the phosphorylated form of the Ca(2+)-dependent nonreceptor protein tyrosine kinase (PTK) proline-rich tyrosine kinase 2 (pPyk2) protein levels in a low-density lipoprotein receptor-related protein (LRP1)-dependent manner. Pyk2 in turn may modulate SERCA2 in cardiomyocytes although this remains controversial. We therefore aimed to investigate the role of LRP1 on hypoxia-induced SERCA2 depletion in cardiomyocytes and to establish LRP1 signalling mechanisms involved. Western blot analysis showed that hypoxia reduced SERCA2 concomitantly with a sustained increase in LRP1 and pPyk2 protein levels in HL-1 cardiomyocytes. By impairing hypoxia-induced Pyk2 phosphorylation and HIF-1α accumulation, LRP1 deficiency prevented SERCA2 depletion and reduction of the sarcoplasmic reticulum calcium content in cardiomyocytes. Moreover, the inhibition of Pyk2 phosphorylation (with the Src-family inhibitor PP2) or the specific silencing of Pyk2 (with siRNA-anti Pyk2) preserved low HIF-1α and high SERCA2 levels in HL-1 cardiomyocytes exposed to hypoxia. We determined that the LRP1/Pyk2 axis represses SERCA2 mRNA expression via HIF-1α since HIF-1α overexpression abolished the protective effect of LRP1 deficiency on SERCA2 depletion. Our findings show a crucial role of LRP1/Pyk2/HIF-1α in hypoxia-induced cardiomyocyte SERCA2 downregulation, a pathophysiological process closely associated with heart failure.


Assuntos
Miócitos Cardíacos/metabolismo , Receptores de LDL/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Hipóxia Celular , Linhagem Celular , Regulação para Baixo , Ativação Enzimática , Quinase 2 de Adesão Focal/metabolismo , Inativação Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Isquemia Miocárdica/enzimologia , Miocárdio/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
6.
Biomed Pharmacother ; 162: 114577, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37001181

RESUMO

AIMS: Atrial fibrillation (AF) has been associated with altered expression of the transcription factor Pitx2c and a high incidence of calcium release-induced afterdepolarizations. However, the relationship between Pitx2c expression and defective calcium homeostasis remains unclear and we here aimed to determine how Pitx2c expression affects calcium release from the sarcoplasmic reticulum (SR) and its impact on electrical activity in isolated atrial myocytes. METHODS: To address this issue, we applied confocal calcium imaging and patch-clamp techniques to atrial myocytes isolated from a mouse model with conditional atrial-specific deletion of Pitx2c. RESULTS: Our findings demonstrate that heterozygous deletion of Pitx2c doubles the calcium spark frequency, increases the frequency of sparks/site 1.5-fold, the calcium spark decay constant from 36 to 42 ms and the wave frequency from none to 3.2 min-1. Additionally, the cell capacitance increased by 30% and both the SR calcium load and the transient inward current (ITI) frequency were doubled. Furthermore, the fraction of cells with spontaneous action potentials increased from none to 44%. These effects of Pitx2c deficiency were comparable in right and left atrial myocytes, and homozygous deletion of Pitx2c did not induce any further effects on sparks, SR calcium load, ITI frequency or spontaneous action potentials. CONCLUSION: Our findings demonstrate that heterozygous Pitx2c deletion induces defects in calcium homeostasis and electrical activity that mimic derangements observed in right atrial myocytes from patients with AF and suggest that Pitx2c deficiency confers cellular electrophysiological hallmarks of AF to isolated atrial myocytes.


Assuntos
Fibrilação Atrial , Animais , Camundongos , Fibrilação Atrial/genética , Cálcio/metabolismo , Homozigoto , Deleção de Sequência , Miócitos Cardíacos/metabolismo
7.
JACC Basic Transl Sci ; 8(1): 1-15, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36777175

RESUMO

Analysis of the spatio-temporal distribution of calcium sparks showed a preferential increase in sparks near the sarcolemma in atrial myocytes from patients with atrial fibrillation (AF), linked to higher ryanodine receptor (RyR2) phosphorylation at s2808 and lower calsequestrin-2 levels. Mathematical modeling, incorporating modulation of RyR2 gating, showed that only the observed combinations of RyR2 phosphorylation and calsequestrin-2 levels can account for the spatio-temporal distribution of sparks in patients with and without AF. Furthermore, we demonstrate that preferential calcium release near the sarcolemma is key to a higher incidence and amplitude of afterdepolarizations in atrial myocytes from patients with AF.

8.
Acta Physiol (Oxf) ; 234(4): e13736, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34709723

RESUMO

AIMS: It is unknown how ß-adrenergic stimulation affects calcium dynamics in individual RyR2 clusters and leads to the induction of spontaneous calcium waves. To address this, we analysed spontaneous calcium release events in green fluorescent protein (GFP)-tagged RyR2 clusters. METHODS: Cardiomyocytes from mice with GFP-tagged RyR2 or human right atrial tissue were subjected to immunofluorescent labelling or confocal calcium imaging. RESULTS: Spontaneous calcium release from single RyR2 clusters induced 91.4% ± 2.0% of all calcium sparks while 8.0% ± 1.6% were caused by release from two neighbouring clusters. Sparks with two RyR2 clusters had 40% bigger amplitude, were 26% wider, and lasted 35% longer at half maximum. Consequently, the spark mass was larger in two- than one-cluster sparks with a median and interquartile range for the cumulative distribution of 15.7 ± 20.1 vs 7.6 ± 5.7 a.u. (P < .01). ß2-adrenergic stimulation increased RyR2 phosphorylation at s2809 and s2815, tripled the fraction of two- and three-cluster sparks, and significantly increased the spark mass. Interestingly, the amplitude and mass of the calcium released from a RyR2 cluster were proportional to the SR calcium load, but the firing rate was not. The spark mass was also higher in 33 patients with atrial fibrillation than in 36 without (22.9 ± 23.4 a.u. vs 10.7 ± 10.9; P = .015). CONCLUSIONS: Most sparks are caused by activation of a single RyR2 cluster at baseline while ß-adrenergic stimulation doubles the mass and the number of clusters per spark. This mimics the shift in the cumulative spark mass distribution observed in myocytes from patients with atrial fibrillation.


Assuntos
Fibrilação Atrial , Canal de Liberação de Cálcio do Receptor de Rianodina , Adrenérgicos , Animais , Fibrilação Atrial/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
9.
Cardiovasc Res ; 118(4): 1033-1045, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33788918

RESUMO

AIMS: Atrial fibrillation (AF) has been associated with intracellular calcium disturbances in human atrial myocytes, but little is known about the potential influence of sex and we here aimed to address this issue. METHODS AND RESULTS: Alterations in calcium regulatory mechanisms were assessed in human atrial myocytes from patients without AF or with long-standing persistent or permanent AF. Patch-clamp measurements revealed that L-type calcium current (ICa) density was significantly smaller in males with than without AF (-1.15 ± 0.37 vs. -2.06 ± 0.29 pA/pF) but not in females with AF (-1.88 ± 0.40 vs. -2.21 ± 0.0.30 pA/pF). In contrast, transient inward currents (ITi) were more frequent in females with than without AF (1.92 ± 0.36 vs. 1.10 ± 0.19 events/min) but not in males with AF. Moreover, confocal calcium imaging showed that females with AF had more calcium spark sites than those without AF (9.8 ± 1.8 vs. 2.2 ± 1.9 sites/µm2) and sparks were wider (3.0 ± 0.3 vs. 2.2 ± 0.3 µm) and lasted longer (79 ± 6 vs. 55 ± 8 ms), favouring their fusion into calcium waves that triggers ITIs and afterdepolarizations. This was linked to higher ryanodine receptor phosphorylation at s2808 in women with AF, and inhibition of adenosine A2A or beta-adrenergic receptors that modulate s2808 phosphorylation was able to reduce the higher incidence of ITI in women with AF. CONCLUSION: Perturbations of the calcium homoeostasis in AF is sex-dependent, concurring with increased spontaneous SR calcium release-induced electrical activity in women but not in men, and with diminished ICa density in men only.


Assuntos
Fibrilação Atrial , Cálcio , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Feminino , Homeostase , Humanos , Masculino , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
10.
Cardiovasc Res ; 115(3): 578-589, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30219899

RESUMO

AIMS: Single nucleotide polymorphisms on chromosome 4q25 have been associated with risk of atrial fibrillation (AF) but the exiguous knowledge of the mechanistic links between these risk variants and underlying electrophysiological alterations hampers their clinical utility. Here, we tested the hypothesis that 4q25 risk variants cause alterations in the intracellular calcium homoeostasis that predispose to spontaneous electrical activity. METHODS AND RESULTS: Western blotting, confocal calcium imaging, and patch-clamp techniques were used to identify mechanisms linking the 4q25 risk variants rs2200733T and rs13143308T to defects in the calcium homoeostasis in human atrial myocytes. Our findings revealed that the rs13143308T variant was more frequent in patients with AF and that myocytes from carriers of this variant had a significantly higher density of calcium sparks (14.1 ± 4.5 vs. 3.1 ± 1.3 events/min, P = 0.02), frequency of transient inward currents (ITI) (1.33 ± 0.24 vs. 0.26 ± 0.09 events/min, P < 0.001) and incidence of spontaneous membrane depolarizations (1.22 ± 0.26 vs. 0.56 ± 0.17 events/min, P = 0.001) than myocytes from patients with the normal rs13143308G variant. These alterations were linked to higher sarcoplasmic reticulum calcium loading (10.2 ± 1.4 vs. 7.3 ± 0.5 amol/pF, P = 0.01), SERCA2 expression (1.37 ± 0.13 fold, P = 0.03), and RyR2 phosphorylation at ser2808 (0.67 ± 0.08 vs. 0.47 ± 0.03, P = 0.01) but not at ser2814 (0.28 ± 0.14 vs. 0.31 ± 0.14, P = 0.61) in patients carrying the rs13143308T risk variant. Furthermore, the presence of a risk variant or AF independently increased the ITI frequency and the increase in the ITI frequency observed in carriers of the risk variants was exacerbated in those with AF. By contrast, the presence of a risk variant did not affect the amplitude or properties of the L-type calcium current in patients with or without AF. CONCLUSIONS: Here, we identify the 4q25 variant rs13143308T as a genetic risk marker for AF, specifically associated with excessive calcium release and spontaneous electrical activity linked to increased SERCA2 expression and RyR2 phosphorylation.


Assuntos
Fibrilação Atrial/genética , Sinalização do Cálcio/genética , Cálcio/metabolismo , Cromossomos Humanos Par 4 , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Polimorfismo de Nucleotídeo Único , Potenciais de Ação/genética , Idoso , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Estudos de Casos e Controles , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Átrios do Coração/fisiopatologia , Frequência Cardíaca/genética , Homeostase , Humanos , Masculino , Miócitos Cardíacos/patologia , Fenótipo , Fosforilação , Fatores de Risco , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
11.
Cardiovasc Res ; 106(1): 76-86, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25712961

RESUMO

AIMS: Ageing-related cardiac disorders such as heart failure and atrial fibrillation often present with intracellular calcium homeostasis dysfunction. However, knowledge of the intrinsic effects of ageing on cellular calcium handling in the human heart is sparse. Therefore, this study aimed to analyse how ageing affects key mechanisms that regulate intracellular calcium in human atrial myocytes. METHODS AND RESULTS: Whole membrane currents and intracellular calcium transients were measured in isolated human right atrial myocytes from 80 patients with normal left atrial dimensions and no history of atrial fibrillation. Patients were categorized as young (<55 years, n = 21), middle aged (55-74 years, n = 42), and old (≥75 years, n = 17). Protein levels were determined by western blot. Ageing was associated with the following electrophysiological changes: (i) a 3.2-fold decrease in the calcium transient (P < 0.01); (ii) reduction of the L-type calcium current (ICa) amplitude (2.4 ± 0.3 pA/pF vs. 1.4 ± 0.2 pA/pF, P < 0.01); (iii) lower levels of L-type calcium channel alpha-subunit (P < 0.05); (iv) lower rates of both fast (14.5 ± 0.9 ms vs. 20.9 ± 1.9, P < 0.01) and slow (73 ± 3 vs. 120 ± 12 ms, P < 0.001) ICa inactivation; and (v) a decrease in the sarcoplasmic reticulum calcium content (10.1 ± 0.8 vs. 6.4 ± 0.6 amol/pF, P < 0.005) associated with a significant decrease in both SERCA2 (P < 0.05) and calsequestrin-2 (P < 0.05) protein levels. In contrast, ageing did not affect spontaneous sarcoplasmic reticulum calcium release. CONCLUSION: Ageing is associated with depression of SR calcium content, L-type calcium current, and calcium transient amplitude that may favour a progressive decline in right atrial contractile function with age.


Assuntos
Envelhecimento/metabolismo , Cálcio/metabolismo , Átrios do Coração/metabolismo , Homeostase/fisiologia , Miócitos Cardíacos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Canais de Cálcio Tipo L/metabolismo , Calsequestrina/metabolismo , Feminino , Átrios do Coração/citologia , Humanos , Masculino , Pessoa de Meia-Idade , Contração Miocárdica/fisiologia , Miócitos Cardíacos/citologia , Técnicas de Patch-Clamp , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA