Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 167(4): 1052-1066.e18, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27814504

RESUMO

It is widely believed that inflammation associated with obesity has an important role in the development of type 2 diabetes. IκB kinase beta (IKKß) is a crucial kinase that responds to inflammatory stimuli such as tumor necrosis factor α (TNF-α) by initiating a variety of intracellular signaling cascades and is considered to be a key element in the inflammation-mediated development of insulin resistance. We show here, contrary to expectation, that IKKß-mediated inflammation is a positive regulator of hepatic glucose homeostasis. IKKß phosphorylates the spliced form of X-Box Binding Protein 1 (XBP1s) and increases the activity of XBP1s. We have used three experimental approaches to enhance the IKKß activity in the liver of obese mice and observed increased XBP1s activity, reduced ER stress, and a significant improvement in insulin sensitivity and consequently in glucose homeostasis. Our results reveal a beneficial role of IKKß-mediated hepatic inflammation in glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático , Glucose/metabolismo , Quinase I-kappa B/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Linhagem Celular Tumoral , Homeostase , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Fosforilação , Estabilidade Proteica
2.
Diabetologia ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922416

RESUMO

AIMS/HYPOTHESIS: Use of genetic risk scores (GRS) may help to distinguish between type 1 diabetes and type 2 diabetes, but less is known about whether GRS are associated with disease severity or progression after diagnosis. Therefore, we tested whether GRS are associated with residual beta cell function and glycaemic control in individuals with type 1 diabetes. METHODS: Immunochip arrays and TOPMed were used to genotype a cross-sectional cohort (n=479, age 41.7 ± 14.9 years, duration of diabetes 16.0 years [IQR 6.0-29.0], HbA1c 55.6 ± 12.2 mmol/mol). Several GRS, which were originally developed to assess genetic risk of type 1 diabetes (GRS-1, GRS-2) and type 2 diabetes (GRS-T2D), were calculated. GRS-C1 and GRS-C2 were based on SNPs that have previously been shown to be associated with residual beta cell function. Regression models were used to investigate the association between GRS and residual beta cell function, assessed using the urinary C-peptide/creatinine ratio, and the association between GRS and continuous glucose monitor metrics. RESULTS: Higher GRS-1 and higher GRS-2 both showed a significant association with undetectable UCPCR (OR 0.78; 95% CI 0.69, 0.89 and OR 0.84: 95% CI 0.75, 0.93, respectively), which were attenuated after correction for sex and age of onset (GRS-2) and disease duration (GRS-1). Higher GRS-C2 was associated with detectable urinary C-peptide/creatinine ratio (≥0.01 nmol/mmol) after correction for sex and age of onset (OR 6.95; 95% CI 1.19, 40.75). A higher GRS-T2D was associated with less time below range (TBR) (OR for TBR<4% 1.41; 95% CI 1.01 to 1.96) and lower glucose coefficient of variance (ß -1.53; 95% CI -2.76, -0.29). CONCLUSIONS/INTERPRETATION: Diabetes-related GRS are associated with residual beta cell function in individuals with type 1 diabetes. These findings suggest some genetic contribution to preservation of beta cell function.

3.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542455

RESUMO

Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a growing health problem for which no therapy exists to date. The modulation of the gut microbiome may have treatment potential for MASLD. Here, we investigated Anaerobutyricum soehngenii, a butyrate-producing anaerobic bacterium with beneficial effects in metabolic syndrome, in a diet-induced MASLD mouse model. Male C57BL/6J mice received a Western-type high-fat diet and water with 15% fructose (WDF) to induce MASLD and were gavaged with A. soehngenii (108 or 109 colony-forming units (CFU) 3 times per week) or a placebo for 6 weeks. The A. soehngenii gavage increased the cecal butyrate concentrations. Although there was no effect on histological MASLD scores, A. soehngenii improved the glycemic response to insulin. In the liver, the WDF-associated altered expression of three genes relevant to the MASLD pathophysiology was reversed upon treatment with A. soehngenii: Lipin-1 (Lpin1), insulin-like growth factor binding protein 1 (Igfbp1) and Interleukin 1 Receptor Type 1 (Il1r1). A. soehngenii administration also increased the intestinal expression of gluconeogenesis and fructolysis genes. Although these effects did not translate into significant histological improvements in MASLD, these results provide a basis for combined gut microbial approaches to induce histological improvements in MASLD.


Assuntos
Clostridiales , Fígado Gorduroso , Doenças Metabólicas , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Composição de Bases , Gluconeogênese , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Butiratos , Expressão Gênica , Fosfatidato Fosfatase
4.
Gastroenterology ; 162(7): 1911-1932, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35151697

RESUMO

BACKGROUND & AIMS: Cardiometabolic diseases (CMDs) have shared properties and causes. Insulin resistance is a risk factor and characteristic of CMDs and has been suggested to be modulated by plasma metabolites derived from gut microbiota (GM). Because diet is among the most important modulators of GM, we performed a systematic review of the literature to assess whether CMDs can be modulated via dietary interventions targeting the GM. METHODS: A systematic review of the literature for clinical studies was performed on Ovid MEDLINE and Ovid Embase. Studies were assessed for risk of bias and patterns of intervention effects. A meta-analysis with random effects models was used to evaluate the effect of dietary interventions on clinical outcomes. RESULTS: Our search yielded 4444 unique articles, from which 15 randomized controlled trials and 6 nonrandomized clinical trials were included. The overall risk of bias was high in all studies. In general, most dietary interventions changed the GM composition, but no consistent effect could be found. Results of the meta-analyses showed that only diastolic blood pressure is decreased across interventions compared with controls (mean difference: -3.63 mm Hg; 95% confidence interval, -7.09 to -0.17; I2 = 0%, P = .04) and that a high-fiber diet was associated with reduced triglyceride levels (mean difference: -0.69 mmol/L; 95% confidence interval, -1.36 to -0.02; I2 = 59%, P = .04). Other CMD parameters were not affected. CONCLUSIONS: Dietary interventions modulate GM composition, blood pressure, and circulating triglycerides. However, current studies have a high methodological heterogeneity and risk of bias. Well-designed and controlled studies are thus necessary to better understand the complex interaction between diet, microbiome, and CMDs. PROSPERO: CRD42020188405.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Pressão Sanguínea , Doenças Cardiovasculares/prevenção & controle , Microbioma Gastrointestinal/fisiologia , Humanos , Fatores de Risco , Triglicerídeos
5.
Gut ; 71(8): 1577-1587, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34697034

RESUMO

OBJECTIVE: Although gut dysbiosis is increasingly recognised as a pathophysiological component of metabolic syndrome (MetS), the role and mode of action of specific gut microbes in metabolic health remain elusive. Previously, we identified the commensal butyrogenic Anaerobutyricum soehngenii to be associated with improved insulin sensitivity in subjects with MetS. In this proof-of-concept study, we investigated the potential therapeutic effects of A. soehngenii L2-7 on systemic metabolic responses and duodenal transcriptome profiles in individuals with MetS. DESIGN: In this randomised double-blind placebo-controlled cross-over study, 12 male subjects with MetS received duodenal infusions of A. soehngenii/ placebo and underwent duodenal biopsies, mixed meal tests (6 hours postinfusion) and 24-hour continuous glucose monitoring. RESULTS: A. soehngenii treatment provoked a markedly increased postprandial excursion of the insulinotropic hormone glucagon-like peptide 1 (GLP-1) and an elevation of plasma secondary bile acids, which were positively associated with GLP-1 levels. Moreover, A. soehngenii treatment robustly shaped the duodenal expression of 73 genes, with the highest fold induction in the expression of regenerating islet-protein 1B (REG1B)-encoding gene. Strikingly, duodenal REG1B expression positively correlated with GLP-1 levels and negatively correlated with peripheral glucose variability, which was significantly diminished in the 24 hours following A. soehngenii intake. Mechanistically, Reg1B expression is induced upon sensing butyrate or bacterial peptidoglycan. Importantly, A. soehngenii duodenal administration was safe and well tolerated. CONCLUSIONS: A single dose of A. soehngenii improves peripheral glycaemic control within 24 hours; it specifically stimulates intestinal GLP-1 production and REG1B expression. Further studies are needed to delineate the specific pathways involved in REG1B induction and function in insulin sensitivity. TRIAL REGISTRATION NUMBER: NTR-NL6630.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome Metabólica , Glicemia/metabolismo , Automonitorização da Glicemia , Clostridiales , Estudos Cross-Over , Diabetes Mellitus Tipo 2/tratamento farmacológico , Método Duplo-Cego , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Controle Glicêmico , Humanos , Insulina/metabolismo , Masculino , Síndrome Metabólica/genética , Transcriptoma
6.
Diabetologia ; 65(10): 1721-1733, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35802167

RESUMO

AIMS/HYPOTHESIS: The general population is ageing, involving an enhanced incidence of chronic diseases such as type 2 diabetes. With ageing, DNA methylation of FHL2 increases, as well as expression of the four and a half LIM domains 2 (FHL2) protein in human pancreatic islets. We hypothesised that FHL2 is actively involved in glucose metabolism. METHODS: Publicly available microarray datasets from human pancreatic islets were analysed for FHL2 expression. In FHL2-deficient mice, we studied glucose clearance and insulin secretion. Gene expression analysis and glucose-stimulated insulin secretion (GSIS) were determined in isolated murine FHL2-deficient islets to evaluate insulin-secretory capacity. Moreover, knockdown and overexpression of FHL2 were accomplished in MIN6 cells to delineate the underlying mechanism of FHL2 function. RESULTS: Transcriptomics of human pancreatic islets revealed that individuals with elevated levels of HbA1c displayed increased FHL2 expression, which correlated negatively with insulin secretion pathways. In line with this observation, FHL2-deficient mice cleared glucose more efficiently than wild-type littermates through increased plasma insulin levels. Insulin sensitivity was comparable between these genotypes. Interestingly, pancreatic islets isolated from FHL2-deficient mice secreted more insulin in GSIS assays than wild-type mouse islets even though insulin content and islet size was similar. To support this observation, we demonstrated increased expression of the transcription factor crucial in insulin secretion, MAF BZIP transcription factor A (MafA), higher expression of GLUT2 and reduced expression of the adverse factor c-Jun in FHL2-deficient islets. The underlying mechanism of FHL2 was further delineated in MIN6 cells. FHL2-knockdown led to enhanced activation of forkhead box protein O1 (FOXO1) and its downstream genes such as Mafa and Pdx1 (encoding pancreatic and duodenal homeobox 1), as well as increased glucose uptake. On the other hand, FHL2 overexpression in MIN6 cells blocked GSIS, increased the formation of reactive oxygen species and increased c-Jun activity. CONCLUSIONS/INTERPRETATION: Our data demonstrate that FHL2 deficiency improves insulin secretion from beta cells and improves glucose tolerance in mice. Given that FHL2 expression in humans increases with age and that high expression levels of FHL2 are associated with beta cell dysfunction, we propose that enhanced FHL2 expression in elderly individuals contributes to glucose intolerance and the development of type 2 diabetes. DATA AVAILABILITY: The human islet microarray datasets used are publicly available and can be found on https://www.ncbi.nlm.nih.gov/geo/ .


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Idoso , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteína Forkhead Box O1/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas com Homeodomínio LIM/genética , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
7.
Annu Rev Med ; 71: 149-161, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31479620

RESUMO

Cardiometabolic disease (CMD), such as type 2 diabetes mellitus and cardiovascular disease, contributes significantly to morbidity and mortality on a global scale. The gut microbiota has emerged as a potential target to beneficially modulate CMD risk, possibly via dietary interventions. Dietary interventions have been shown to considerably alter gut microbiota composition and function. Moreover, several diet-derived microbial metabolites are able to modulate human metabolism and thereby alter CMD risk. Dietary interventions that affect gut microbiota composition and function are therefore a promising, novel, and cost-efficient method to reduce CMD risk. Studies suggest that fermentable carbohydrates can beneficially alter gut microbiota composition and function, whereas high animal protein and high fat intake negatively impact gut microbiota function and composition. This review focuses on the role of macronutrients (i.e., carbohydrate, protein, and fat) and dietary patterns (e.g., vegetarian/vegan and Mediterranean diet) in gut microbiota composition and function in the context of CMD.


Assuntos
Doenças Cardiovasculares/epidemiologia , Diabetes Mellitus Tipo 2/epidemiologia , Dieta Mediterrânea , Dieta Vegetariana , Microbioma Gastrointestinal , Doenças Cardiovasculares/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Humanos , Masculino , Prevalência , Prognóstico , Medição de Risco , Papel (figurativo)
8.
Handb Exp Pharmacol ; 270: 311-334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32185503

RESUMO

Atherosclerotic cardiovascular disease (ASCVD) is a prime example of a systems disease. In the initial phase, apolipoprotein B-containing cholesterol-rich lipoproteins deposit excess cholesterol in macrophage-like cells that subsequently develop into foam cells. A multitude of systemic as well as environmental factors are involved in further progression of atherosclerotic plaque formation. In recent years, both oral and gut microbiota have been proposed to play an important role in the process at different stages. Particularly bacteria from the oral cavity may easily reach the circulation and cause low-grade inflammation, a recognized risk factor for ASCVD. Gut-derived microbiota on the other hand can influence host metabolism on various levels. Next to translocation across the intestinal wall, these prokaryotes produce a great number of specific metabolites such as trimethylamine and short-chain fatty acids but can also metabolize endogenously formed bile acids and convert these into metabolites that may influence signal transduction pathways. In this overview, we critically discuss the novel developments in this rapidly emerging research field.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Ácidos e Sais Biliares , Doenças Cardiovasculares/etiologia , Humanos , Inflamação , Intestinos
9.
Gut ; 69(3): 502-512, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31147381

RESUMO

OBJECTIVE: Bariatric surgery improves glucose metabolism. Recent data suggest that faecal microbiota transplantation (FMT) using faeces from postbariatric surgery diet-induced obese mice in germ-free mice improves glucose metabolism and intestinal homeostasis. We here investigated whether allogenic FMT using faeces from post-Roux-en-Y gastric bypass donors (RYGB-D) compared with using faeces from metabolic syndrome donors (METS-D) has short-term effects on glucose metabolism, intestinal transit time and adipose tissue inflammation in treatment-naïve, obese, insulin-resistant male subjects. DESIGN: Subjects with metabolic syndrome (n=22) received allogenic FMT either from RYGB-D or METS-D. Hepatic and peripheral insulin sensitivity as well as lipolysis were measured at baseline and 2 weeks after FMT by hyperinsulinaemic euglycaemic stable isotope (2H2-glucose and 2H5-glycerol) clamp. Secondary outcome parameters were changes in resting energy expenditure, intestinal transit time, faecal short-chain fatty acids (SCFA) and bile acids, and inflammatory markers in subcutaneous adipose tissue related to intestinal microbiota composition. Faecal SCFA, bile acids, glycaemic control and inflammatory parameters were also evaluated at 8 weeks. RESULTS: We observed a significant decrease in insulin sensitivity 2 weeks after allogenic METS-D FMT (median rate of glucose disappearance: from 40.6 to 34.0 µmol/kg/min; p<0.01). Moreover, a trend (p=0.052) towards faster intestinal transit time following RYGB-D FMT was seen. Finally, we observed changes in faecal bile acids (increased lithocholic, deoxycholic and (iso)lithocholic acid after METS-D FMT), inflammatory markers (decreased adipose tissue chemokine ligand 2 (CCL2) gene expression and plasma CCL2 after RYGB-D FMT) and changes in several intestinal microbiota taxa. CONCLUSION: Allogenic FMT using METS-D decreases insulin sensitivity in metabolic syndrome recipients when compared with using post-RYGB-D. Further research is needed to delineate the role of donor characteristics in FMT efficacy in human insulin-resistant subjects. TRIAL REGISTRATION NUMBER: NTR4327.


Assuntos
Transplante de Microbiota Fecal , Derivação Gástrica , Glucose/metabolismo , Resistência à Insulina , Síndrome Metabólica/metabolismo , Adulto , Idoso , Ácidos e Sais Biliares/análise , Quimiocina CCL2/sangue , Quimiocina CCL2/genética , Metabolismo Energético , Ácidos Graxos Voláteis/análise , Fezes/química , Microbioma Gastrointestinal , Trânsito Gastrointestinal , Expressão Gênica , Humanos , Lipólise , Masculino , Síndrome Metabólica/fisiopatologia , Síndrome Metabólica/terapia , Metabolômica , Pessoa de Meia-Idade , Gordura Subcutânea/metabolismo , Doadores de Tecidos , Adulto Jovem
10.
Diabetologia ; 63(12): 2533-2547, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32880688

RESUMO

Humans with the metabolic syndrome and type 2 diabetes have an altered gut microbiome. Emerging evidence indicates that it is not only the microorganisms and their structural components, but also their metabolites that influences the host and contributes to the development of the metabolic syndrome and type 2 diabetes. Here, we discuss some of the mechanisms underlying how microbial metabolites are recognised by the host or are further processed endogenously in the context of type 2 diabetes. We discuss the possibility that gut-derived microbial metabolites fuel the development of the metabolic syndrome and type 2 diabetes. Graphical abstract.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Humanos , Intestinos/microbiologia , Fatores de Risco
11.
Diabetologia ; 63(3): 597-610, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31915895

RESUMO

AIMS/HYPOTHESIS: The pathophysiology of type 1 diabetes has been linked to altered gut microbiota and more specifically to a shortage of intestinal production of the short-chain fatty acid (SCFA) butyrate, which may play key roles in maintaining intestinal epithelial integrity and in human and gut microbial metabolism. Butyrate supplementation can protect against autoimmune diabetes in mouse models. We thus set out to study the effect of oral butyrate vs placebo on glucose regulation and immune variables in human participants with longstanding type 1 diabetes. METHODS: We administered a daily oral dose of 4 g sodium butyrate or placebo for 1 month to 30 individuals with longstanding type 1 diabetes, without comorbidity or medication use, in a randomised (1:1), controlled, double-blind crossover trial, with a washout period of 1 month in between. Participants were randomly allocated to the 'oral sodium butyrate capsules first' or 'oral placebo capsules first' study arm in blocks of five. The clinical investigator received blinded medication from the clinical trial pharmacy. All participants, people doing measurements or examinations, or people assessing the outcomes were blinded to group assignment. The primary outcome was a change in the innate immune phenotype (monocyte subsets and in vitro cytokine production). Secondary outcomes were changes in blood markers of islet autoimmunity (cell counts, lymphocyte stimulation indices and CD8 quantum dot assays), glucose and lipid metabolism, beta cell function (by mixed-meal test), gut microbiota and faecal SCFA. The data was collected at the Amsterdam University Medical Centers. RESULTS: All 30 participants were analysed. Faecal butyrate and propionate levels were significantly affected by oral butyrate supplementation and butyrate treatment was safe. However, this modulation of intestinal SCFAs did not result in any significant changes in adaptive or innate immunity, or in any of the other outcome variables. In our discussion, we elaborate on this important discrepancy with previous animal work. CONCLUSIONS/INTERPRETATION: Oral butyrate supplementation does not significantly affect innate or adaptive immunity in humans with longstanding type 1 diabetes. TRIAL REGISTRATION: Netherlands Trial Register: NL4832 (www.trialregister.nl). DATA AVAILABILITY: Raw sequencing data are available in the European Nucleotide Archive repository (https://www.ebi.ac.uk/ena/browse) under study PRJEB30292. FUNDING: The study was funded by a Le Ducq consortium grant, a CVON grant, a personal ZONMW-VIDI grant and a Dutch Heart Foundation grant.


Assuntos
Autoimunidade/efeitos dos fármacos , Ácido Butírico/administração & dosagem , Diabetes Mellitus Tipo 1/tratamento farmacológico , Imunidade Inata/efeitos dos fármacos , Ilhotas Pancreáticas/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Administração Oral , Adulto , Ácido Butírico/efeitos adversos , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Progressão da Doença , Feminino , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Países Baixos , Fatores de Tempo , Adulto Jovem
13.
Diabetologia ; 60(4): 613-617, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28013341

RESUMO

The role of the intestinal microbiota and microbial metabolites in the maintenance of host health and development of metabolic disease has gained significant attention over the past decade. Mechanistic insight revealing causality, however, is scarce. Work by Ussar and co-workers demonstrates that a complex interaction between microbiota, host genetics and environmental factors is involved in metabolic disease development in mice. In addition, Perry and co-workers show that the microbial metabolite acetate augments insulin resistance in rats. These studies underscore an important role of the microbiota in the development of obesity and symptoms of type 2 diabetes in rodents. If causality can be demonstrated in humans, development of novel diagnostic and therapeutic tools that target the gut microbiota will have high potential.


Assuntos
Microbiota/fisiologia , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Resistência à Insulina/fisiologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/microbiologia , Obesidade/metabolismo , Obesidade/microbiologia
14.
J Biol Chem ; 291(33): 17394-404, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27325692

RESUMO

Endoplasmic reticulum (ER) stress has been shown to contribute to various metabolic diseases, including non-alcoholic fatty liver disease and type 2 diabetes. Reduction of ER stress by treatment with chemical chaperones or overexpression of ER chaperone proteins alleviates hepatic steatosis. Nonetheless, X-box binding protein 1s (XBP1s), a key transcription factor that reduces ER stress, has been proposed as a lipogenic transcription factor. In this report, we document that XBP1s leads to suppression of lipogenic gene expression and reduction of hepatic triglyceride and diacylglycerol content in livers of diet-induced obese and genetically obese and insulin-resistant ob/ob mice. Furthermore, we also show that PKCϵ activity, which correlates with fatty liver and which causes insulin resistance, was significantly reduced in diet-induced obese mice. Finally, we have shown that XBP1s reduces the hepatic fatty acid synthesis rate and enhances macrolipophagy, an initiating step in lipolysis. Our results reveal that XBP1s reduces hepatic lipogenic gene expression and improves hepatosteatosis in mouse models of obesity and insulin resistance, which leads us to conclude that XBP1s has anti-lipogenic properties in the liver.


Assuntos
Estresse do Retículo Endoplasmático , Ácidos Graxos/biossíntese , Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica , Resistência à Insulina , Lipogênese , Obesidade/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Modelos Animais de Doenças , Ácidos Graxos/genética , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Obesos , Obesidade/genética , Obesidade/patologia , Proteína Quinase C-épsilon/genética , Proteína Quinase C-épsilon/metabolismo , Proteína 1 de Ligação a X-Box/genética
15.
J Cell Mol Med ; 20(8): 1561-70, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27444544

RESUMO

Bromodomain-containing protein 7 (BRD7) is a member of bromodomain-containing protein family and its function has been implicated in several diseases. We have previously shown that BRD7 plays a role in metabolic processes. However, the effect of BRD7 deficiency in glucose metabolism and its role in in vivo have not been fully revealed. Here, we report the essential role of BRD7 during embryo development. Mice homozygous for BRD7 led to embryonic lethality at mid-gestation. Homozygous BRD7 knockout (KO) mice showed retardation in development, and eventually all BRD7 KO embryos died in utero prior to E16.5. Partial knockdown of Brd7 gene displayed mild changes in glucose metabolism.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Desenvolvimento Embrionário , Glucose/metabolismo , Adenoviridae/metabolismo , Animais , Proteínas Cromossômicas não Histona/genética , Cruzamentos Genéticos , Dieta Hiperlipídica , Perda do Embrião/genética , Perda do Embrião/patologia , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Heterozigoto , Homeostase/efeitos dos fármacos , Homeostase/genética , Insulina/farmacologia , Fígado/metabolismo , Masculino , Camundongos Knockout , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo
17.
Hum Mol Genet ; 22(25): 5249-61, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23933733

RESUMO

The importance of mitochondrial fatty acid ß-oxidation (FAO) as a glucose-sparing process is illustrated by patients with inherited defects in FAO, who may present with life-threatening fasting-induced hypoketotic hypoglycemia. It is unknown why peripheral glucose demand outpaces hepatic gluconeogenesis in these patients. In this study, we have systematically addressed the fasting response in long-chain acyl-CoA dehydrogenase-deficient (LCAD KO) mice. We demonstrate that the fasting-induced hypoglycemia in LCAD KO mice was initiated by an increased glucose requirement in peripheral tissues, leading to rapid hepatic glycogen depletion. Gluconeogenesis did not compensate for the increased glucose demand, which was not due to insufficient hepatic glucogenic capacity but rather caused by a shortage in the supply of glucogenic precursors. This shortage in supply was explained by a suppressed glucose-alanine cycle, decreased branched-chain amino acid metabolism and ultimately impaired protein mobilization. We conclude that during fasting, FAO not only serves to spare glucose but is also indispensable for amino acid metabolism, which is essential for the maintenance of adequate glucose production.


Assuntos
Gluconeogênese/genética , Glucose/metabolismo , Hipoglicemia/metabolismo , Oxirredução , Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Aminoácidos/metabolismo , Animais , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Humanos , Hipoglicemia/genética , Hipoglicemia/patologia , Erros Inatos do Metabolismo Lipídico/metabolismo , Glicogênio Hepático/genética , Glicogênio Hepático/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia
18.
J Clin Gastroenterol ; 49 Suppl 1: S13-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26447957

RESUMO

The contribution of intestinal bacterial strains (gut microbiota) to the development of obesity and obesity-related disorders is increasingly recognized as a potential diagnostic and pharmacologic target. Alterations in the intestinal bacterial composition have been associated with presence of chronic low-grade inflammation, a known feature of insulin resistance and type 2 diabetes mellitus. However, causality still needs to be proven. Fecal transplantation studies in germ-free mice have provided crucial insight into the causality of gut microbiota in development of obesity and obesity-related disorders. Moreover, fecal transplantation studies in conjunction with fecal sampling in prospectively followed cohorts will help identify causally involved intestinal bacterial strains in human obesity. Results from these studies will lead to characterization of novel diagnostic markers as well as therapeutic strategies that aim to treat obesity and obesity-related disorders.


Assuntos
Metabolismo Energético , Microbioma Gastrointestinal , Obesidade/microbiologia , Animais , Translocação Bacteriana , Diabetes Mellitus Tipo 2/microbiologia , Transplante de Microbiota Fecal , Humanos , Inflamação/microbiologia , Resistência à Insulina , Camundongos
19.
Biochem Biophys Res Commun ; 443(2): 689-93, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24333417

RESUMO

Increased mammalian target of rapamycin complex 1 (mTORC1) activity has been suggested to play important roles in development of insulin resistance in obesity. mTORC1 hyperactivity also increases endoplasmic reticulum (ER) stress, which in turn contributes to development of insulin resistance and glucose intolerance. Increased IRS1 phosphorylation at Ser307 in vitro is correlated with mTORC1- and ER stress-induced insulin resistance. This phosphorylation site correlates strongly with impaired insulin receptor signaling in diabetic mice and humans. In contrast, evidence from knock-in mice suggests that phosphorylation of IRS1 at Ser307 is actually required to maintain insulin sensitivity. To study the involvement of IRS1(Ser307) phosphorylation in mTORC1-mediated glucose intolerance and insulin sensitivity in vivo, we investigated the effects of liver specific TSC1 depletion in IRS1(Ser307Ala) mice and controls. Our results demonstrate that blockade of IRS1(Ser307) phosphorylation in vivo does not prevent mTORC1-mediated glucose intolerance and insulin resistance.


Assuntos
Glicemia/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Complexos Multiproteicos/metabolismo , Serina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteína 1 do Complexo Esclerose Tuberosa
20.
Artigo em Inglês | MEDLINE | ID: mdl-38637223

RESUMO

The worldwide prevalence of cardiometabolic diseases (CMD) is increasing, and emerging evidence implicates the gut microbiota in this multifactorial disease development. Bacteriophages (phages) are viruses that selectively target a bacterial host; thus, phage therapy offers a precise means of modulating the gut microbiota, limiting collateral damage on the ecosystem. Several studies demonstrate the potential of phages in human disease, including alcoholic and steatotic liver disease. In this opinion article we discuss the potential of phage therapy as a predefined medicinal product for CMD and discuss its current challenges, including the generation of effective phage combinations, product formulation, and strict manufacturing requirements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA