Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 246: 118035, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199477

RESUMO

Nitrification of ammoniacal nitrogen (N-NH4+) to nitrate (N-NO3-) was investigated in a lab-scale sequencing batch reactor (SBR) to evaluate its efficiency. During the nitrification process the removal of N-NH4+ reached 96%, resulting in 73% formation of N-NO3-. A lineal correlation (r2 = 0.9978) was obtained between the concentration of volatile suspended solids (VSS) and the maximal N-NO3- concentration at the end of each batch cycle under stationary state. The bacterial taxons in the initial inoculum were identified, revealing a complex diverse community mainly in the two major bacterial phyla Proteobacteria and Actinobacteria. The FAPROTAX algorithm predicted the presence in the inoculum of taxa involved in relevant processes of the nitrogen metabolism, highlighting the bacterial genera Nitrospira and Nitrosomonas that are both involved in the nitrification process. A kinetic model was formulated for predicting and validating the transformation of N-NH4+, N-NO2- and N-NO3- and the removal of organic and inorganic carbon (TOC and IC, respectively). The results showed how the increase in biomass concentration slowed down the transformation to oxidised forms of nitrogen and increased denitrification in the settling and filling stages under free aeration conditions.


Assuntos
Desnitrificação , Nitrificação , Reatores Biológicos/microbiologia , Genômica , Bactérias/genética , Bactérias/metabolismo , Nitrogênio/análise , Esgotos/microbiologia
2.
J Environ Manage ; 294: 113044, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130131

RESUMO

The influence of bed material on the odor removal performance of a biofilter was studied. A compost-wood biofilter and a wood biofilter were treated with a gaseous stream contaminated with butyric acid and comparatively evaluated at pilot scale using olfactometric, physico-chemical and microbiological approaches. The variables analyzed in both biofilters were correlated with specific families of their microbiota composition. In addition to a higher nutrients content (nitrogen and phosphorus), the compost-wood biofilter registered maximum values in number of aerobic microorganisms (3.6·108 CFU/g) and in aerobic microbiological activity (≈40 mg O2/g VS of cumulative oxygen demand at 20 h). This may explain the higher performance of this biofilter compared to the wood biofilter, withstanding odor loads of up to 1450 ouE/m2·s with odor removal efficiencies close to 100%. The analysis of the microbial community showed that Actinobacteria, particularly the mostly aerobic Microbacteriaceae family, might play an important role in butyric acid degradation and hence reduce odor impact. The multidisciplinary analysis carried out in this work could be a very useful strategy for the optimal design of biofiltration operations.


Assuntos
Compostagem , Filtração , Biodegradação Ambiental , Ácido Butírico , Gases , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA