Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biophys J ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549370

RESUMO

Acid-sensing ion channels (ASICs) are proton-gated cation channels that contribute to fast synaptic transmission and have roles in fear conditioning and nociception. Apart from activation at low pH, ASIC1a also undergoes several types of desensitization, including acute desensitization, which terminates activation; steady-state desensitization, which occurs at sub-activating proton concentrations and limits subsequent activation; and tachyphylaxis, which results in a progressive decrease in response during a series of activations. Structural insights from a desensitized state of ASIC1 have provided great spatial detail, but dynamic insights into conformational changes in different desensitizing conditions are largely missing. Here, we use electrophysiology and voltage-clamp fluorometry to follow the functional changes of the pore along with conformational changes at several positions in the extracellular and upper transmembrane domain via cysteine-labeled fluorophores. Acute desensitization terminates activation in wild type, but introducing an N414K mutation in the ß11-12 linker of mouse ASIC1a interfered with this process. The mutation also affected steady-state desensitization and led to pronounced tachyphylaxis. Although the extracellular domain of this mutant remained sensitive to pH and underwent pH-dependent conformational changes, these conformational changes did not necessarily lead to desensitization. N414K-containing channels also remained sensitive to a known peptide modulator that increases steady-state desensitization, indicating that the mutation only reduced, but not precluded, desensitization. Together, this study contributes to our understanding of the fundamental properties of ASIC1a desensitization, emphasizing the complex interplay between the conformational changes of the extracellular domain and the pore during channel activation and desensitization.

2.
Proc Natl Acad Sci U S A ; 117(13): 7447-7454, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32165542

RESUMO

Acid-sensing ion channels (ASICs) are proton-gated cation channels that contribute to neurotransmission, as well as initiation of pain and neuronal death following ischemic stroke. As such, there is a great interest in understanding the in vivo regulation of ASICs, especially by endogenous neuropeptides that potently modulate ASICs. The most potent endogenous ASIC modulator known to date is the opioid neuropeptide big dynorphin (BigDyn). BigDyn is up-regulated in chronic pain and increases ASIC-mediated neuronal death during acidosis. Understanding the mechanism and site of action of BigDyn on ASICs could thus enable the rational design of compounds potentially useful in the treatment of pain and ischemic stroke. To this end, we employ a combination of electrophysiology, voltage-clamp fluorometry, synthetic BigDyn analogs, and noncanonical amino acid-mediated photocrosslinking. We demonstrate that BigDyn binding results in an ASIC1a closed resting conformation that is distinct from open and desensitized states induced by protons. Using alanine-substituted BigDyn analogs, we find that the BigDyn modulation of ASIC1a is primarily mediated through electrostatic interactions of basic amino acids in the BigDyn N terminus. Furthermore, neutralizing acidic amino acids in the ASIC1a extracellular domain reduces BigDyn effects, suggesting a binding site at the acidic pocket. This is confirmed by photocrosslinking using the noncanonical amino acid azidophenylalanine. Overall, our data define the mechanism of how BigDyn modulates ASIC1a, identify the acidic pocket as the binding site for BigDyn, and thus highlight this cavity as an important site for the development of ASIC-targeting therapeutics.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Dinorfinas/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/fisiologia , Oócitos/metabolismo , Prótons , Xenopus laevis
3.
Proc Natl Acad Sci U S A ; 115(42): 10672-10677, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30275330

RESUMO

Theories of general anesthesia have shifted in focus from bulk lipid effects to specific interactions with membrane proteins. Target receptors include several subtypes of pentameric ligand-gated ion channels; however, structures of physiologically relevant proteins in this family have yet to define anesthetic binding at high resolution. Recent cocrystal structures of the bacterial protein GLIC provide snapshots of state-dependent binding sites for the common surgical agent propofol (PFL), offering a detailed model system for anesthetic modulation. Here, we combine molecular dynamics and oocyte electrophysiology to reveal differential motion and modulation upon modification of a transmembrane binding site within each GLIC subunit. WT channels exhibited net inhibition by PFL, and a contraction of the cavity away from the pore-lining M2 helix in the absence of drug. Conversely, in GLIC variants exhibiting net PFL potentiation, the cavity was persistently expanded and proximal to M2. Mutations designed to favor this deepened site enabled sensitivity even to subclinical concentrations of PFL, and a uniquely prolonged mode of potentiation evident up to ∼30 min after washout. Dependence of these prolonged effects on exposure time implicated the membrane as a reservoir for a lipid-accessible binding site. However, at the highest measured concentrations, potentiation appeared to be masked by an acute inhibitory effect, consistent with the presence of a discrete, water-accessible site of inhibition. These results support a multisite model of transmembrane allosteric modulation, including a possible link between lipid- and receptor-based theories that could inform the development of new anesthetics.


Assuntos
Anestésicos Intravenosos/farmacologia , Membrana Celular/metabolismo , Cianobactérias/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Propofol/farmacologia , Regulação Alostérica , Sítios de Ligação , Membrana Celular/efeitos dos fármacos , Cianobactérias/efeitos dos fármacos , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/genética , Ligantes , Potenciais da Membrana , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica
4.
J Neurochem ; 138(2): 243-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27102368

RESUMO

The superfamily of pentameric ligand-gated ion channels includes neurotransmitter receptors that mediate fast synaptic transmission in vertebrates, and are targets for drugs including alcohols, anesthetics, benzodiazepines, and anticonvulsants. However, the mechanisms of ion channel opening, gating, and modulation in these receptors leave many open questions, despite their pharmacological importance. Subtle conformational changes in both the extracellular and transmembrane domains are likely to influence channel opening, but have been difficult to characterize given the limited structural data available for human membrane proteins. Recent crystal structures of a modified Caenorhabditis elegans glutamate-gated chloride channel (GluCl) in multiple states offer an appealing model system for structure-function studies. However, the pharmacology of the crystallographic GluCl construct is not well established. To establish the functional relevance of this system, we used two-electrode voltage-clamp electrophysiology in Xenopus oocytes to characterize activation of crystallographic and native-like GluCl constructs by L-glutamate and ivermectin. We also tested modulation by ethanol and other anesthetic agents, and used site-directed mutagenesis to explore the role of a region of Loop F which was implicated in ligand gating by molecular dynamics simulations. Our findings indicate that the crystallographic construct functionally models concentration-dependent agonism and allosteric modulation of pharmacologically relevant receptors. Specific substitutions at residue Leu174 in loop F altered direct L-glutamate activation, consistent with computational evidence for this region's role in ligand binding. These insights demonstrate conservation of activation and modulation properties in this receptor family, and establish a framework for GluCl as a model system, including new possibilities for drug discovery. In this study, we elucidate the validity of a modified glutamate-gated chloride channel (GluClcryst ) as a structurally accessible model for GABAA receptors. In contrast to native-like controls, GluClcryst exhibits classical activation by its neurotransmitter ligand L-glutamate. The modified channel is also sensitive to allosteric modulators associated with human GABAA receptors, and to site-directed mutations predicted to alter channel opening.


Assuntos
Canais de Cloreto/metabolismo , Ácido Glutâmico/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Neurotransmissores/metabolismo , Animais , Feminino , Humanos , Ativação do Canal Iônico , Mutagênese Sítio-Dirigida/métodos , Xenopus
5.
Mol Pharmacol ; 84(5): 670-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23950219

RESUMO

GABA(A) receptors play a crucial role in the actions of general anesthetics. The recently published crystal structure of the general anesthetic propofol bound to Gloeobacter violaceus ligand-gated ion channel (GLIC), a bacterial homolog of GABA(A) receptors, provided an opportunity to explore structure-based ligand discovery for pentameric ligand-gated ion channels (pLGICs). We used molecular docking of 153,000 commercially available compounds to identify molecules that interact with the propofol binding site in GLIC. In total, 29 compounds were selected for functional testing on recombinant GLIC, and 16 of these compounds modulated GLIC function. Active compounds were also tested on recombinant GABA(A) receptors, and point mutations around the presumed binding pocket were introduced into GLIC and GABA(A) receptors to test for binding specificity. The potency of active compounds was only weakly correlated with properties such as lipophilicity or molecular weight. One compound was found to mimic the actions of propofol on GLIC and GABA(A), and to be sensitive to mutations that reduce the action of propofol in both receptors. Mutant receptors also provided insight about the position of the binding sites and the relevance of the receptor's conformation for anesthetic actions. Overall, the findings support the feasibility of the use of virtual screening to discover allosteric modulators of pLGICs, and suggest that GLIC is a valid model system to identify novel GABA(A) receptor ligands.


Assuntos
Anestésicos Gerais/farmacologia , Canais Iônicos de Abertura Ativada por Ligante/efeitos dos fármacos , Animais , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Feminino , Canais Iônicos de Abertura Ativada por Ligante/química , Simulação de Acoplamento Molecular , Mutação , Receptores de GABA-A/efeitos dos fármacos , Xenopus laevis
6.
Elife ; 112022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35156612

RESUMO

Acid-sensing ion channels (ASICs) are trimeric proton-gated cation channels involved in fast synaptic transmission. Pharmacological inhibition of ASIC1a reduces neurotoxicity and stroke infarct volumes, with the cysteine knot toxin psalmotoxin-1 (PcTx1) being one of the most potent and selective inhibitors. PcTx1 binds at the subunit interface in the extracellular domain (ECD), but the mechanism and conformational consequences of the interaction, as well as the number of toxin molecules required for inhibition, remain unknown. Here, we use voltage-clamp fluorometry and subunit concatenation to decipher the mechanism and stoichiometry of PcTx1 inhibition of ASIC1a. Besides the known inhibitory binding mode, we propose PcTx1 to have at least two additional binding modes that are decoupled from the pore. One of these modes induces a long-lived ECD conformation that reduces the activity of an endogenous neuropeptide. This long-lived conformational state is proton-dependent and can be destabilized by a mutation that decreases PcTx1 sensitivity. Lastly, the use of concatemeric channel constructs reveals that disruption of a single PcTx1 binding site is sufficient to destabilize the toxin-induced conformation, while functional inhibition is not impaired until two or more binding sites are mutated. Together, our work provides insight into the mechanism of PcTx1 inhibition of ASICs and uncovers a prolonged conformational change with possible pharmacological implications.


Assuntos
Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Venenos de Aranha/química , Venenos de Aranha/metabolismo , Animais , Sítios de Ligação , Cisteína/metabolismo , Fluorometria/métodos , Concentração de Íons de Hidrogênio , Conformação Molecular , Mutação , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Peptídeos/genética , Ligação Proteica , Prótons , Venenos de Aranha/genética
7.
Trends Pharmacol Sci ; 42(12): 1035-1050, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34674886

RESUMO

Tissue acidification is associated with a variety of disease states, and acid-sensing ion channels (ASICs) that can sense changes in pH have gained traction as possible pharmaceutical targets. An array of modulators, ranging from small molecules to large biopharmaceuticals, are known to inhibit ASICs. Here, we summarize recent insights from animal studies to assess the therapeutic potential of ASICs in disorders such as ischemic stroke, various pain-related processes, anxiety, and cardiac pathologies. We also review the factors that present a challenge in the pharmacological targeting of ASICs, and which need to be taken into careful consideration when developing potent and selective modulators in the future.


Assuntos
Canais Iônicos Sensíveis a Ácido , Canais Iônicos Sensíveis a Ácido/química , Animais , Humanos
8.
Elife ; 102021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34652272

RESUMO

Ligand-gated ion channels conduct currents in response to chemical stimuli, mediating electrochemical signaling in neurons and other excitable cells. For many channels, the details of gating remain unclear, partly due to limited structural data and simulation timescales. Here, we used enhanced sampling to simulate the pH-gated channel GLIC, and construct Markov state models (MSMs) of gating. Consistent with new functional recordings, we report in oocytes, our analysis revealed differential effects of protonation and mutation on free-energy wells. Clustering of closed- versus open-like states enabled estimation of open probabilities and transition rates, while higher-order clustering affirmed conformational trends in gating. Furthermore, our models uncovered state- and protonation-dependent symmetrization. This demonstrates the applicability of MSMs to map energetic and conformational transitions between ion-channel functional states, and how they reproduce shifts upon activation or mutation, with implications for modeling neuronal function and developing state-selective drugs.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante/fisiologia , Poro Nuclear/fisiologia , Prótons , Animais , Cadeias de Markov , Xenopus laevis
9.
Cell Rep ; 23(4): 993-1004, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29694907

RESUMO

Ion channel modulation by general anesthetics is a vital pharmacological process with implications for receptor biophysics and drug development. Functional studies have implicated conserved sites of both potentiation and inhibition in pentameric ligand-gated ion channels, but a detailed structural mechanism for these bimodal effects is lacking. The prokaryotic model protein GLIC recapitulates anesthetic modulation of human ion channels, and it is accessible to structure determination in both apparent open and closed states. Here, we report ten X-ray structures and electrophysiological characterization of GLIC variants in the presence and absence of general anesthetics, including the surgical agent propofol. We show that general anesthetics can allosterically favor closed channels by binding in the pore or favor open channels via various subsites in the transmembrane domain. Our results support an integrated, multi-site mechanism for allosteric modulation, and they provide atomic details of both potentiation and inhibition by one of the most common general anesthetics.


Assuntos
Anestésicos Intravenosos/química , Canais Iônicos de Abertura Ativada por Ligante/química , Modelos Moleculares , Propofol/química , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/genética , Anestésicos Intravenosos/farmacologia , Animais , Cristalografia por Raios X , Humanos , Canais Iônicos de Abertura Ativada por Ligante/genética , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Propofol/farmacologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA