Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 524(7566): 489-92, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26168397

RESUMO

Cell division requires the precise coordination of chromosome segregation and cytokinesis. This coordination is achieved by the recruitment of an actomyosin regulator, Ect2, to overlapping microtubules at the centre of the elongating anaphase spindle. Ect2 then signals to the overlying cortex to promote the assembly and constriction of an actomyosin ring between segregating chromosomes. Here, by studying division in proliferating Drosophila and human cells, we demonstrate the existence of a second, parallel signalling pathway, which triggers the relaxation of the polar cell cortex at mid anaphase. This is independent of furrow formation, centrosomes and microtubules and, instead, depends on PP1 phosphatase and its regulatory subunit Sds22 (refs 2, 3). As separating chromosomes move towards the polar cortex at mid anaphase, kinetochore-localized PP1-Sds22 helps to break cortical symmetry by inducing the dephosphorylation and inactivation of ezrin/radixin/moesin proteins at cell poles. This promotes local softening of the cortex, facilitating anaphase elongation and orderly cell division. In summary, this identifies a conserved kinetochore-based phosphatase signal and substrate, which function together to link anaphase chromosome movements to cortical polarization, thereby coupling chromosome segregation to cell division.


Assuntos
Segregação de Cromossomos , Drosophila melanogaster/citologia , Cinetocoros/metabolismo , Proteína Fosfatase 1/metabolismo , Actinas/metabolismo , Anáfase , Animais , Polaridade Celular , Centrossomo/metabolismo , Cromatina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Humanos , Cinetocoros/enzimologia , Masculino , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/metabolismo , Fosforilação , Transdução de Sinais
2.
J Biol Chem ; 293(3): 893-905, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29180449

RESUMO

The atypical chemokine receptor ACKR3 contributes to chemotaxis by binding, internalizing, and degrading the chemokines CXCL11 and CXCL12 to shape and terminate chemotactic gradients during development and immune responses. Although unable to trigger G protein activation, both ligands activate G protein-independent ACKR3 responses and prompt arrestin recruitment. This offers a model to specifically study ligand-specific receptor conformations leading to G protein-independent signaling and to functional parameters such as receptor transport and chemokine degradation. We here show chemokine specificity in arrestin recruitment, by different effects of single amino acid substitutions in ACKR3 on arrestin in response to CXCL12 or CXCL11. Chemokine specificity in receptor transport was also observed, as CXCL11 induced faster receptor internalization, slower recycling, and longer intracellular sojourn of ACKR3 than CXCL12. Internalization and recycling rates of the ACKR3 R1423.50A substitution in response to each chemokine were similar; however, ACKR3 R1423.50A degraded only CXCL12 and not CXCL11. This suggests that ligand-specific intracellular receptor transport is required for chemokine degradation. Remarkably, the failure of ACKR3 R1423.50A to degrade CXCL11 was not caused by the lack of arrestin recruitment; rather, arrestin was entirely dispensable for scavenging of either chemokine. This suggests the involvement of another, yet unidentified, ACKR3 effector in scavenging. In summary, our study correlates ACKR3 ligand-specific conformational transitions with chemokine-dependent receptor transport dynamics and points toward unexpected ligand specificity in the mechanisms of chemokine degradation.


Assuntos
Arrestina/metabolismo , Receptores CXCR/metabolismo , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Microscopia Confocal , Mutação/genética , Ligação Proteica , Receptores CXCR/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
3.
Haematologica ; 101(12): 1534-1543, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27540136

RESUMO

The most common rearrangement in childhood precursor B-cell acute lymphoblastic leukemia is the t(12;21)(p13;q22) translocation resulting in the ETV6-AML1 fusion gene. A frequent concomitant event is the loss of the residual ETV6 allele suggesting a critical role for the ETV6 transcriptional repressor in the etiology of this cancer. However, the precise mechanism through which loss of functional ETV6 contributes to disease pathogenesis is still unclear. To investigate the impact of ETV6 loss on the transcriptional network and to identify new transcriptional targets of ETV6, we used whole transcriptome analysis of both pre-B leukemic cell lines and patients combined with chromatin immunoprecipitation. Using this integrative approach, we identified 4 novel direct ETV6 target genes: CLIC5, BIRC7, ANGPTL2 and WBP1L To further evaluate the role of chloride intracellular channel protein CLIC5 in leukemogenesis, we generated cell lines overexpressing CLIC5 and demonstrated an increased resistance to hydrogen peroxide-induced apoptosis. We further described the implications of CLIC5's ion channel activity in lysosomal-mediated cell death, possibly by modulating the function of the transferrin receptor with which it colocalizes intracellularly. For the first time, we showed that loss of ETV6 leads to significant overexpression of CLIC5, which in turn leads to decreased lysosome-mediated apoptosis. Our data suggest that heightened CLIC5 activity could promote a permissive environment for oxidative stress-induced DNA damage accumulation, and thereby contribute to leukemogenesis.


Assuntos
Canais de Cloreto/genética , Regulação Leucêmica da Expressão Gênica , Proteínas dos Microfilamentos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Repressoras/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Biomarcadores Tumorais , Linhagem Celular Tumoral , Criança , Pré-Escolar , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Peróxido de Hidrogênio/farmacologia , Lisossomos/metabolismo , Masculino , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Translocação Genética , Variante 6 da Proteína do Fator de Translocação ETS
4.
Blood ; 117(22): 6024-35, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21355092

RESUMO

The failure of blood vessels to revascularize ischemic neural tissue represents a significant challenge for vascular biology. Examples include proliferative retinopathies (PRs) such as retinopathy of prematurity and proliferative diabetic retinopathy, which are the leading causes of blindness in children and working-age adults. PRs are characterized by initial microvascular degeneration, followed by a compensatory albeit pathologic hypervascularization mounted by the hypoxic retina attempting to reinstate metabolic equilibrium. Paradoxically, this secondary revascularization fails to grow into the most ischemic regions of the retina. Instead, the new vessels are misdirected toward the vitreous, suggesting that vasorepulsive forces operate in the avascular hypoxic retina. In the present study, we demonstrate that the neuronal guidance cue semaphorin 3A (Sema3A) is secreted by hypoxic neurons in the avascular retina in response to the proinflammatory cytokine IL-1ß. Sema3A contributes to vascular decay and later forms a chemical barrier that repels neo-vessels toward the vitreous. Conversely, silencing Sema3A expression enhances normal vascular regeneration within the ischemic retina, thereby diminishing aberrant neovascularization and preserving neuroretinal function. Overcoming the chemical barrier (Sema3A) released by ischemic neurons accelerates the vascular regeneration of neural tissues, which restores metabolic supply and improves retinal function. Our findings may be applicable to other neurovascular ischemic conditions such as stroke.


Assuntos
Isquemia/patologia , Neovascularização Patológica , Neurônios/patologia , Oxigênio/toxicidade , Regeneração , Doenças Retinianas/patologia , Semaforina-3A/fisiologia , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Western Blotting , Adesão Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Técnicas Imunoenzimáticas , Interleucina-1beta/farmacologia , Isquemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , RNA Mensageiro/genética , Ratos , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Neovascularização Retiniana , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
iScience ; 26(6): 106903, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37378349

RESUMO

Animal cell cytokinesis requires activation of the GTPase RhoA (Rho1 in Drosophila), which assembles an F-actin- and myosin II-dependent contractile ring (CR) at the equatorial plasma membrane. CR closure is poorly understood, but involves the multidomain scaffold protein, Anillin. Anillin binds many CR components including F-actin and myosin II (collectively actomyosin), RhoA and the septins. Anillin recruits septins to the CR but the mechanism is unclear. Live imaging of Drosophila S2 cells and HeLa cells revealed that the Anillin N-terminus, which scaffolds actomyosin, cannot recruit septins to the CR. Rather, septin recruitment required the ability of the Anillin C-terminus to bind Rho1-GTP and the presence of the Anillin PH domain, in a sequential mechanism occurring at the plasma membrane, independently of F-actin. Anillin mutations that blocked septin recruitment, but not actomyosin scaffolding, slowed CR closure and disrupted cytokinesis. Thus, CR closure requires coordination of two Rho1-dependent networks: actomyosin and anillo-septin.

6.
J Cell Biol ; 221(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35191950

RESUMO

During cytokinesis, microtubules become compacted into a dense midbody prior to abscission. Using genetic perturbations and imaging of C. elegans zygotes, Hirsch et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202011085) uncover an unexpected source of microtubules that can populate the midbody when central spindle microtubules are missing.


Assuntos
Caenorhabditis elegans , Citocinese , Animais , Caenorhabditis elegans/genética , Citocinese/genética , Microtúbulos/genética
7.
Front Cell Dev Biol ; 8: 575226, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117802

RESUMO

Cytokinesis is the last step of cell division that partitions the cellular organelles and cytoplasm of one cell into two. In animal cells, cytokinesis requires Rho-GTPase-dependent assembly of F-actin and myosin II (actomyosin) to form an equatorial contractile ring (CR) that bisects the cell. Despite 50 years of research, the precise mechanisms of CR assembly, tension generation and closure remain elusive. This hypothesis article considers a holistic view of the CR that, in addition to actomyosin, includes another Rho-dependent cytoskeletal sub-network containing the scaffold protein, Anillin, and septin filaments (collectively termed anillo-septin). We synthesize evidence from our prior work in Drosophila S2 cells that actomyosin and anillo-septin form separable networks that are independently anchored to the plasma membrane. This latter realization leads to a simple conceptual model in which CR assembly and closure depend upon the micro-management of the membrane microdomains to which actomyosin and anillo-septin sub-networks are attached. During CR assembly, actomyosin contractility gathers and compresses its underlying membrane microdomain attachment sites. These microdomains resist this compression, which builds tension. During CR closure, membrane microdomains are transferred from the actomyosin sub-network to the anillo-septin sub-network, with which they flow out of the CR as it advances. This relative outflow of membrane microdomains regulates tension, reduces the circumference of the CR and promotes actomyosin disassembly all at the same time. According to this hypothesis, the metazoan CR can be viewed as a membrane microdomain gathering, compressing and sorting machine that intrinsically buffers its own tension through coordination of actomyosin contractility and anillo-septin-membrane relative outflow, all controlled by Rho. Central to this model is the abandonment of the dogmatic view that the plasma membrane is always readily deformable by the underlying cytoskeleton. Rather, the membrane resists compression to build tension. The notion that the CR might generate tension through resistance to compression of its own membrane microdomain attachment sites, can account for numerous otherwise puzzling observations and warrants further investigation using multiple systems and methods.

8.
Curr Biol ; 16(4): 359-70, 2006 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-16488869

RESUMO

BACKGROUND: Animal cell cytokinesis is characterized by a sequence of dramatic cortical rearrangements. How these are coordinated and coupled with mitosis is largely unknown. To explore the initiation of cytokinesis, we focused on the earliest cell shape change, cell elongation, which occurs during anaphase B and prior to cytokinetic furrowing. RESULTS: Using RNAi and live video microscopy in Drosophila S2 cells, we implicate Rho-kinase (Rok) and myosin II in anaphase cell elongation. rok RNAi decreased equatorial myosin II recruitment, prevented cell elongation, and caused a remarkable spindle defect where the spindle poles collided with an unyielding cell cortex and the interpolar microtubules buckled outward as they continued to extend. Disruption of the actin cytoskeleton with Latrunculin A, which abolishes cortical rigidity, suppressed the spindle defect. rok RNAi also affected furrowing, which was delayed and slowed, sometimes distorted, and in severe cases blocked altogether. Codepletion of the myosin binding subunit (Mbs) of myosin phosphatase, an antagonist of myosin II activation, only partially suppressed the cell-elongation defect and the furrowing delay, but prevented cytokinesis failures induced by prolonged rok RNAi. The marked sensitivity of cell elongation to Rok depletion was highlighted by RNAi to other genes in the Rho pathway, such as pebble, racGAP50C, and diaphanous, which had profound effects on furrowing but lesser effects on elongation. CONCLUSIONS: We show that cortical changes underlying cell elongation are more sensitive to depletion of Rok and myosin II, in comparison to other regulators of cytokinesis, and suggest that a distinct regulatory pathway promotes cell elongation.


Assuntos
Forma Celular/fisiologia , Citocinese/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Anáfase/fisiologia , Animais , Linhagem Celular , Drosophila , Peptídeos e Proteínas de Sinalização Intracelular , Microscopia de Vídeo , Miosina não Muscular Tipo IIA/fisiologia , Quinases Associadas a rho
9.
J Cell Biol ; 163(1): 143-54, 2003 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-14530382

RESUMO

Cytokinesis requires a dramatic remodeling of the cortical cytoskeleton as well as membrane addition. The Drosophila pericentrosomal protein, Nuclear-fallout (Nuf), provides a link between these two processes. In nuf-derived embryos, actin remodeling and membrane recruitment during the initial stages of metaphase and cellular furrow formation are disrupted. Nuf is a homologue of arfophilin-2, an ADP ribosylation factor effector that binds Rab11 and influences recycling endosome (RE) organization. Here, we show that Nuf is an important component of the RE, and that these phenotypes are a consequence of Nuf activities at the RE. Nuf exhibits extensive colocalization with Rab11, a key RE component. GST pull-downs and the presence of a conserved Rab11-binding domain in Nuf demonstrate that Nuf and Rab11 physically associate. In addition, Nuf and Rab11 are mutually required for their localization to the RE. Embryos with reduced levels of Rab11 produce membrane recruitment and actin remodeling defects strikingly similar to nuf-derived embryos. These analyses support a common role for Nuf and Rab11 at the RE in membrane trafficking and actin remodeling during the initial stages of furrow formation.


Assuntos
Actinas/metabolismo , Divisão Celular/fisiologia , Proteínas de Drosophila , Proteínas Nucleares/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Centrossomo/metabolismo , Drosophila/embriologia , Drosophila/fisiologia , Genes Reporter , Proteínas Nucleares/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas rab de Ligação ao GTP/genética
10.
Mol Biol Cell ; 30(17): 2185-2204, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166845

RESUMO

Rho-dependent proteins control assembly of the cytokinetic contractile ring, yet it remains unclear how those proteins guide ring closure and how they promote subsequent formation of a stable midbody ring. Citron kinase is one important component required for midbody ring formation but its mechanisms of action and relationship with Rho are controversial. Here, we conduct a structure-function analysis of the Drosophila Citron kinase, Sticky, in Schneider's S2 cells. We define two separable and redundant RhoGEF/Pebble-dependent inputs into Sticky recruitment to the nascent midbody ring and show that each input is subsequently required for retention at, and for the integrity of, the mature midbody ring. The first input is via an actomyosin-independent interaction between Sticky and Anillin, a key scaffold also required for midbody ring formation. The second input requires the Rho-binding domain of Sticky, whose boundaries we have defined. Collectively, these results show how midbody ring biogenesis depends on the coordinated actions of Sticky, Anillin, and Rho.


Assuntos
Proteínas Contráteis/metabolismo , Proteínas de Drosophila/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Actomiosina/metabolismo , Animais , Linhagem Celular , Citocinese/fisiologia , Drosophila melanogaster/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Interferência de RNA , Fator Rho/metabolismo , Relação Estrutura-Atividade
11.
Curr Biol ; 29(5): 775-789.e7, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30799246

RESUMO

During cytokinesis, an actomyosin contractile ring drives the separation of the two daughter cells. A key molecule in this process is the inositol lipid PtdIns(4,5)P2, which recruits numerous factors to the equatorial region for contractile ring assembly. Despite the importance of PtdIns(4,5)P2 in cytokinesis, the regulation of this lipid in cell division remains poorly understood. Here, we identify a role for IPIP27 in mediating cellular PtdIns(4,5)P2 homeostasis. IPIP27 scaffolds the inositol phosphatase oculocerebrorenal syndrome of Lowe (OCRL) by coupling it to endocytic BAR domain proteins. Loss of IPIP27 causes accumulation of PtdIns(4,5)P2 on aberrant endomembrane vacuoles, mislocalization of the cytokinetic machinery, and extensive cortical membrane blebbing. This phenotype is observed in Drosophila and human cells and can result in cytokinesis failure. We have therefore identified IPIP27 as a key modulator of cellular PtdIns(4,5)P2 homeostasis required for normal cytokinesis. The results indicate that scaffolding of inositol phosphatase activity is critical for maintaining PtdIns(4,5)P2 homeostasis and highlight a critical role for this process in cell division.


Assuntos
Citocinese/fisiologia , Homeostase , Síndrome Oculocerebrorrenal/fisiopatologia , Fosfatidilinositóis/metabolismo , Animais , Linhagem Celular , Drosophila melanogaster , Células HeLa , Humanos
12.
Biochem Mol Biol Educ ; 36(6): 387-94, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21591227

RESUMO

Teaching to large classes is often challenging particularly when the faculty and teaching resources are limited. Innovative, less staff intensive ways need to be explored to enhance teaching and to engage students. We describe our experience teaching biochemistry to 350 students at Muhimbili University of Health and Allied Sciences (MUHAS) under severe resource limitations and highlight our efforts to enhance the teaching effectiveness. We focus on peer assisted learning and present three pilot initiatives that we developed to supplement teaching and facilitate student interaction within the classroom. These included; instructor-facilitated small group activities within large group settings, peer-led tutorials to provide supplemental teaching and peer-assisted instruction in IT skills to enable access to online biochemistry learning resources. All our efforts were practical, low cost and well received by our learners. They may be applied in many different settings where faculties face similar challenges.

13.
J Vis Exp ; (134)2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29733310

RESUMO

GABAergic interneurons (INs) are critical components of neuronal networks that drive cognition and behavior. INs destined to populate the cortex migrate tangentially from their place of origin in the ventral telencephalon (including from the medial and caudal ganglionic eminences (MGE, CGE)) to the dorsal cortical plate in response to a variety of intrinsic and extrinsic cues. Different methodologies have been developed over the years to genetically manipulate specific pathways and investigate how they regulate the dynamic cytoskeletal changes required for proper IN migration. In utero electroporation has been extensively used to study the effect of gene repression or overexpression in specific IN subtypes while assessing the impact on morphology and final position. However, while this approach is readily used to modify radially migrating pyramidal cells, it is more technically challenging when targeting INs. In utero electroporation generates a low yield given the decreased survival rates of pups when electroporation is conducted before e14.5, as is customary when studying MGE-derived INs. In an alternative approach, MGE explants provide easy access to the MGE and facilitate the imaging of genetically modified INs. However, in these explants, INs migrate into an artificial matrix, devoid of endogenous guidance cues and thalamic inputs. This prompted us to optimize a method where INs can migrate in a more naturalistic environment, while circumventing the technical challenges of in utero approaches. In this paper, we describe the combination of ex utero electroporation of embryonic mouse brains followed by organotypic slice cultures to readily track, image and reconstruct genetically modified INs migrating along their natural paths in response to endogenous cues. This approach allows for both the quantification of the dynamic aspects of IN migration with time-lapse confocal imaging, as well as the detailed analysis of various morphological parameters using neuronal reconstructions on fixed immunolabeled tissue.


Assuntos
Encéfalo/citologia , Eletroporação/métodos , Neurônios GABAérgicos/citologia , Interneurônios/citologia , Microscopia Confocal/métodos , Técnicas de Cultura de Órgãos/métodos , Imagem com Lapso de Tempo/métodos , Animais , Eletroquimioterapia/métodos , Feminino , Camundongos
14.
Stem Cell Reports ; 10(6): 1721-1733, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29706499

RESUMO

Brain neurogenesis is severely impaired following exposure to ionizing radiation (IR). We and others have shown that the expression of the tumor suppressor gene p16INK4a is increased in tissues exposed to IR and thus hypothesized that its expression could limit neurogenesis in the irradiated brain. Here, we found that exposure to IR leads to persistent DNA damage and the expression of p16INK4a in the hippocampus and subventricular zone regions. This was accompanied by a decline in neurogenesis, as determined by doublecortin expression and bromodeoxyuridine incorporation, an effect partially restored in Ink4a/arf-null mice. Increased neurogenesis in the absence of INK4a/ARF expression was independent of apoptosis and activation of the microglia. Moreover, treatment of irradiated mice with a superoxide dismutase mimetic or clearance of p16INK4a-expressing cells using mouse genetics failed to increase neurogenesis. In conclusion, our results suggest that IR-induced p16INK4a expression is a mechanism that limits neurogenesis.


Assuntos
Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Inibidor p16 de Quinase Dependente de Ciclina/genética , Regulação da Expressão Gênica/efeitos da radiação , Neurogênese/genética , Neurogênese/efeitos da radiação , Radiação Ionizante , Animais , Apoptose/genética , Biomarcadores , Biomimética , Encéfalo/patologia , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Dano ao DNA/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Imagem Molecular , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/efeitos da radiação , Neurogênese/efeitos dos fármacos , Doses de Radiação , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
Curr Biol ; 14(18): 1685-93, 2004 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-15380073

RESUMO

Much of our understanding of animal cell cytokinesis centers on the regulation of the equatorial acto-myosin contractile ring that drives the rapid ingression of a deep cleavage furrow. However, the central part of the mitotic spindle collapses to a dense structure that impedes the furrow and keeps the daughter cells connected via an intercellular bridge. Factors involved in the formation, maintenance, and resolution of this bridge are largely unknown. Using a library of 7,216 double-stranded RNAs (dsRNAs) representing the conserved genes of Drosophila, we performed an RNA interference (RNAi) screen for cytokinesis genes in Schneider's S2 cells. We identified both familiar and novel genes whose inactivation induced a multi-nucleate phenotype. Using live video microscopy, we show that three genes: anillin, citron-kinase (CG10522), and soluble N-ethylmaleimide sensitive factor (NSF) attachment protein (alpha-SNAP), are essential for the terminal (post-furrowing) events of cytokinesis. anillin RNAi caused gradual disruption of the intercellular bridge after furrowing; citron-kinase RNAi destabilized the bridge at a later stage; alpha-SNAP RNAi caused sister cells to fuse many hours later and by a different mechanism. We have shown that the stability of the intercellular bridge is essential for successful cytokinesis and have defined genes contributing to this stability.


Assuntos
Citocinese/fisiologia , Fuso Acromático/fisiologia , Actinas/metabolismo , Animais , Células Cultivadas , Proteínas Contráteis/genética , Proteínas Contráteis/fisiologia , Drosophila , Biblioteca Gênica , Peptídeos e Proteínas de Sinalização Intracelular , Microscopia de Vídeo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Interferência de RNA , RNA de Cadeia Dupla/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/fisiologia
16.
Curr Biol ; 13(8): 647-53, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12699620

RESUMO

Successful mitosis requires that anaphase chromosomes sustain a commitment to move to their assigned spindle poles. This requires stable spindle attachment of anaphase kinetochores. Prior to anaphase, stable spindle attachment depends on tension created by opposing forces on sister kinetochores [1]. Because tension is lost when kinetochores disjoin, stable attachment in anaphase must have a different basis. After expression of nondegradable cyclin B (CYC-B(S)) in Drosophila embryos, sister chromosomes disjoined normally but their anaphase behavior was abnormal [2]. Chromosomes exhibited cycles of reorientation from one pole to the other. Additionally, the unpaired kinetochores accumulated attachments to both poles (merotelic attachments), congressed (again) to a pseudometaphase plate, and reacquired associations with checkpoint proteins more characteristic of prometaphase kinetochores. Unpaired prometaphase kinetochores, which occurred in a mutant entering mitosis with unreplicated (unpaired) chromosomes, behaved just like the anaphase kinetochores at the CYC-B(S) arrest. Finally, the normal anaphase release of AuroraB/INCENP from kinetochores was blocked by CYC-B(S) expression and, reciprocally, was advanced in a CycB mutant. Given its established role in destabilizing kinetochore-microtubule interactions [3], Aurora B dissociation is likely to be key to the change in kinetochore behavior. These findings show that, in addition to loss of sister chromosome cohesion, successful anaphase requires a kinetochore behavioral transition triggered by CYC-B destruction.


Assuntos
Anáfase/fisiologia , Ciclina B/metabolismo , Drosophila/metabolismo , Cinetocoros/metabolismo , Fuso Acromático/fisiologia , Animais , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Drosophila/citologia , Drosophila/genética , Proteínas de Drosophila , Modelos Genéticos , Coloração e Rotulagem
17.
Mol Biol Cell ; 14(7): 2908-20, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12857874

RESUMO

Arfophilin is an ADP ribosylation factor (Arf) binding protein of unknown function. It is identical to the Rab11 binding protein eferin/Rab11-FIP3, and we show it binds both Arf5 and Rab11. We describe a related protein, arfophilin-2, that interacts with Arf5 in a nucleotide-dependent manner, but not Arf1, 4, or 6 and also binds Rab11. Arfophilin-2 localized to a perinuclear compartment, the centrosomal area, and focal adhesions. The localization of arfophilin-2 to the perinuclear compartment was selectively blocked by overexpression of Arf5-T31N. In contrast, a green fluorescent protein-arfophilin-2 chimera or arfophilin-2 deletions were localized around the centrosome in a region that was also enriched for transferrin receptors and Rab11 but not early endosome markers, suggesting that the distribution of the endosomal recycling compartment was altered. The arfophilins belong to a conserved family that includes Drosophila melanogaster nuclear fallout, a centrosomal protein required for cellularization. Expression of green fluorescent protein-nuclear fallout in HeLa cells resulted in a similar phenotype, indicative of functional homology and thus implicating the arfophilins in mitosis/cytokinesis. We suggest that the novel dual GTPase-binding capacity of the arfophilins could serve as an interface of signals from Rab and Arf GTPases to regulate membrane traffic and integrate distinct signals in the late endosomal recycling compartment.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas de Transporte/metabolismo , Endossomos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , Células CHO , Proteínas de Transporte/genética , Centrossomo/metabolismo , Clonagem Molecular , Cricetinae , Cricetulus , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células HeLa , Humanos , Mitose/genética , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Homologia de Sequência , Técnicas do Sistema de Duplo-Híbrido
18.
J Mol Biol ; 429(5): 715-731, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28147230

RESUMO

Cytokinesis of animal cells requires the assembly of a contractile ring, which promotes daughter cell splitting. Anillin is a conserved scaffold protein involved in organizing the structural components of the contractile ring including filamentous actin (F-actin), myosin, and septins and in forming the subsequent midbody ring. Like other metazoan homologs, Drosophila anillin contains a conserved domain that can bind and bundle F-actin, but the importance and molecular details of its interaction with F-actin remain unclear. Here, we show that in a depletion-and-rescue assay in Drosophila S2 cells, anillin lacking the entire actin-binding domain (ActBD) exhibits defective cortical localization during mitosis and a greatly diminished ability to support cytokinesis. Using in vitro binding assays and electron microscopy on recombinant fragments, we determine that the anillin ActBD harbors three distinct actin-binding sites (ABS 1-3). We show that each ABS binds to a distinct place on F-actin. Importantly, ABS1 and ABS3 partially overlap on the surface of actin and, therefore, interact with F-actin in a mutually exclusive fashion. Although ABS2 and ABS3 are sufficient for bundling, ABS1 contributes to the overall F-actin bundling activity of anillin and enables anillin to switch between two actin-bundling morphologies and promote the formation of three-dimensional F-actin bundles. Finally, we show that in live S2 cells, ABS2 and ABS3 are each required and together sufficient for the robust cortical localization of the ActBD during cytokinesis. Collectively, our structural, biochemical, and cell biological data suggest that multiple anillin-actin interaction modes promote the faithful progression of cytokinesis.


Assuntos
Actinas/metabolismo , Proteínas Contráteis/metabolismo , Citocinese , Domínios e Motivos de Interação entre Proteínas , Animais , Drosophila/metabolismo , Processamento de Imagem Assistida por Computador , Mitose , Miosinas , Septinas
19.
Sci Rep ; 6: 37391, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27874077

RESUMO

Pathological choroidal neovascularization (CNV) is the common cause of vision loss in patients with age-related macular degeneration (AMD). Macrophages possess potential angiogenic function in CNV. We have demonstrated that human T lymphocyte-derived microparticles (LMPs) exert a potent antiangiogenic effect in several pathological neovascularization models. In this study, we investigated the alteration of proangiogenic properties of macrophages by LMPs treatment in vitro and in vivo models. LMPs regulated the expression of several angiogenesis-related factors in macrophages and consequently stimulated their antiangiogenic effects evidenced by the suppression of the proliferation of human retinal endothelial cells in co-culture experiments. The involvement of CD36 receptor in LMPs uptake by macrophages was demonstrated by in vitro assays and by immunostaining of choroidal flat mounts. In addition, ex vivo experiments showed that CD36 mediates the antiangiogenic effect of LMPs in murine and human choroidal explants. Furthermore, intravitreal injection of LMPs in the mouse model of laser-induced CNV significantly suppressed CNV in CD36 dependent manner. The results of this study suggested an ability of LMPs to alter the gene expression pattern of angiogenesis-related factors in macrophages, which provide important information for a new therapeutic approach for efficiently interfering with both vascular and extravascular components of CNV.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Neovascularização de Coroide/patologia , Linfócitos/metabolismo , Macrófagos/metabolismo , Neovascularização Fisiológica , Animais , Biomarcadores/metabolismo , Antígenos CD36/metabolismo , Polaridade Celular , Proliferação de Células , Regulação da Expressão Gênica , Humanos , Lasers , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células RAW 264.7
20.
Mol Genet Metab Rep ; 1: 407-411, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27896114

RESUMO

Heterozygous mutations in the UBIAD1 gene cause Schnyder corneal dystrophy characterized by abnormal cholesterol and phospholipid deposits in the cornea. Ubiad1 protein was recently identified as Golgi prenyltransferase responsible for biosynthesis of vitamin K2 and CoQ10, a key protein in the mitochondrial electron transport chain. Our study shows that silencing UBIAD1 in cultured human hepatocellular carcinoma cells causes dramatic morphological changes and cholesterol storage in the mitochondria, emphasizing an important role of UBIAD1 in mitochondrial function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA