Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Environ Qual ; 45(4): 1359-66, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27380085

RESUMO

Low levels of oxygen (O) in the hypolimnion layer of lakes are harmful to benthic animals and fish; they may also adversely affect nutrient cycles. Artificial aeration is often used in lake management to counteract these problems, but the effects of aeration on nitrogen (N) cycling are not known. We studied the effects of hypolimnetic aeration on N dynamics and temperature in a eutrophic lake by comparing continuous and pulsed aeration with a nonaerated station. Aeration decreased the accumulation of NH-N deep in the lake (20-33 m) by supplying O for nitrification, which in turn provided substrate for denitrification and promoted N removal. Aeration also increased the temperature in the hypolimnion. Denitrification rate was highest in the nonaerated deep areas (average, 7.62 mg N m d) due to very high rates during spring turnover of the water column, demonstrating that natural turnover provides O for nitrification. During stratification, denitrification was highest at the continuously aerated station (4.06 mg N m d) and lowest at the nonaerated station (3.02 mg N m d). At the periodically aerated station, aeration pauses did not restrict the increase in temperature but resulted in accumulation of NH-N and decreased the contribution of denitrification as a nitrate reduction process. Our findings demonstrate that hypolimnetic aeration can substantially affect N cycling in lakes and that the effect depends on the aeration strategy. Because N is one of the main nutrients controlling eutrophication, the effects of aeration methods on N removal should be considered as part of strategies to manage water quality in lakes.


Assuntos
Desnitrificação , Eutrofização , Nitrogênio/química , Lagos , Oxigênio , Temperatura
2.
Environ Sci Technol ; 48(22): 13229-37, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25347214

RESUMO

Chemolithoautotrophic denitrification is an important mechanism of nitrogen loss in the water column of euxinic basins, but its isotope fractionation factor is not known. Sulfurimonas gotlandica GD1(T), a recently isolated bacterial key player in Baltic Sea pelagic redoxcline processes, was used to determine the isotope fractionation of nitrogen and oxygen in nitrate during denitrification. Under anoxic conditions, nitrate reduction was accompanied by nitrogen and oxygen isotope fractionation of 23.8 ± 2.5‰ and 11.7 ± 1.1‰, respectively. The isotope effect for nitrogen was in the range determined for heterotrophic denitrification, with only the absence of stirring resulting in a significant decrease of the fractionation factor. The relative increase in δ(18)ONO3 to δ(15)NNO3 did not follow the 1:1 relationship characteristic of heterotrophic, marine denitrification. Instead, δ(18)ONO3 increased slower than δ(15)NNO3, with a conserved ratio of 0.5:1. This result suggests that the periplasmic nitrate reductase (Nap) of S. gotlandica strain GD1(T) fractionates the N and O in nitrate differently than the membrane-bound nitrate reductase (Nar), which is generally prevalent among heterotrophic denitrifiers and is considered as the dominant driver for the observed isotope fractionation. Hence in the Baltic Sea redoxcline, other, as yet-unidentified factors likely explain the low apparent fractionation.


Assuntos
Crescimento Quimioautotrófico , Desnitrificação , Epsilonproteobacteria/metabolismo , Nitratos/química , Nitrogênio/química , Oxigênio/química , Fracionamento Químico , Isótopos de Nitrogênio , Oxirredução , Oxigênio/farmacologia , Isótopos de Oxigênio
4.
Ambio ; 43(1): 26-36, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24414802

RESUMO

Hypoxia has occurred intermittently over the Holocene in the Baltic Sea, but the recent expansion from less than 10 000 km(2) before 1950 to >60 000 km(2) since 2000 is mainly caused by enhanced nutrient inputs from land and atmosphere. With worsening hypoxia, the role of sediments changes from nitrogen removal to nitrogen release as ammonium. At present, denitrification in the water column and sediments is equally important. Phosphorus is currently buried in sediments mainly in organic form, with an additional contribution of reduced Fe-phosphate minerals in the deep anoxic basins. Upon the transition to oxic conditions, a significant proportion of the organic phosphorus will be remineralized, with the phosphorus then being bound to iron oxides. This iron-oxide bound phosphorus is readily released to the water column upon the onset of hypoxia again. Important ecosystems services carried out by the benthic fauna, including biogeochemical feedback-loops and biomass production, are also lost with hypoxia. The results provide quantitative knowledge of nutrient release and recycling processes under various environmental conditions in support of decision support tools underlying the Baltic Sea Action Plan.


Assuntos
Ecossistema , Eutrofização , Oxigênio/análise , Água do Mar/análise , Países Bálticos , Biomassa , Sedimentos Geológicos , Nitrogênio/análise , Oceanos e Mares , Fósforo/análise
5.
Ecology ; 94(10): 2275-87, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24358713

RESUMO

Ecosystem functioning is threatened by an increasing number of anthropogenic stressors, creating a legacy of disturbance that undermines ecosystem resilience. However, few empirical studies have assessed to what extent an ecosystem can tolerate repeated disturbances and sustain its multiple functions. By inducing increasingly recurring hypoxic disturbances to a sedimentary ecosystem, we show that the majority of individual ecosystem functions experience gradual degradation patterns in response to repetitive pulse disturbances. The degradation in overall ecosystem functioning was, however, evident at an earlier stage than for single ecosystem functions and was induced after a short pulse of hypoxia (i.e., three days), which likely reduced ecosystem resistance to further hypoxic perturbations. The increasing number of repeated pulse disturbances gradually moved the system closer to a press response. In addition to the disturbance regime, the changes in benthic trait composition as well as habitat heterogeneity were important for explaining the variability in overall ecosystem functioning. Our results suggest that disturbance-induced responses across multiple ecosystem functions can serve as a warning signal for losses of the adaptive capacity of an ecosystem, and might at an early stage provide information to managers and policy makers when remediation efforts should be initiated.


Assuntos
Ecossistema , Modelos Biológicos , Animais , Biomassa , Sedimentos Geológicos , Oceanos e Mares , Oxigênio/química , Água/química
6.
Ambio ; 41(2): 161-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22246635

RESUMO

Primary production in the eutrophic Baltic Sea is limited by nitrogen availability; hence denitrification (natural transformation of nitrate to gaseous N(2)) in the sediments is crucial in mitigating the effects of eutrophication. This study shows that dissimilatory nitrate reduction to ammonium (DNRA) process, where nitrogen is not removed but instead recycled in the system, dominates nitrate reduction in low oxygen conditions (O(2) <110 µM), which have been persistent in the central Gulf of Finland during the past decade. The nitrogen removal rates measured in this study show that nitrogen removal has decreased in the Gulf of Finland compared to rates measured in mid-1990s and the decrease is most likely caused by the increased bottom water hypoxia.


Assuntos
Anaerobiose , Desnitrificação , Sedimentos Geológicos/química , Europa (Continente) , Nitratos/química , Oceanos e Mares , Oxirredução
7.
Ambio ; 36(2-3): 134-40, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17520925

RESUMO

Estuaries have been suggested to have an important role in reducing the nitrogen load transported to the sea. We measured denitrification rates in six estuaries of the northern Baltic Sea. Four of them were river mouths in the Bothnian Bay (northern Gulf of Bothnia), and two were estuary bays, one in the Archipelago Sea (southern Gulf of Bothnia) and the other in the Gulf of Finland. Denitrification rates in the four river mouths varied between 330 and 905 micromol N m(-2) d(-1). The estuary bays at the Archipelago Sea and the Gulf of Bothnia had denitrification rates from 90 micromol N m(-2) d(-1) to 910 micromol N m(-2) d(-1) and from 230 micromol N m(-2) d(-1) to 320 micromol N m(-2) d(-1), respectively. Denitrification removed 3.6-9.0% of the total nitrogen loading in the river mouths and in the estuary bay in the Gulf of Finland, where the residence times were short. In the estuary bay with a long residence time, in the Archipelago Sea, up to 4.5% of nitrate loading and 19% of nitrogen loading were removed before entering the sea. According to our results, the sediments of the fast-flowing rivers and the estuary areas with short residence times have a limited capacity to reduce the nitrogen load to the Baltic Sea.


Assuntos
Monitoramento Ambiental , Nitritos/metabolismo , Óxido Nitroso/metabolismo , Rios , Poluentes da Água/metabolismo , Países Bálticos , Finlândia , Geografia , Nitrogênio/metabolismo , Oceanos e Mares , Oxigênio/metabolismo , Medição de Risco , Temperatura , Fatores de Tempo , Movimentos da Água
8.
Mar Environ Res ; 113: 153-63, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26722795

RESUMO

The diversity and dynamics of ammonia-oxidizing bacteria (AOB) and archaea (AOA) nitrifying communities in the sediments of the eutrophic Gulf of Finland (GoF) were investigated. Using clone libraries of ammonia monooxygenase (amoA) gene fragments and terminal restriction fragment length polymorphism (TRFLP), we found a low richness of both AOB and AOA. The AOB amoA phylogeny matched that of AOB 16S ribosomal genes from the same samples. AOA communities were characterized by strong spatial variation while AOB communities showed notable temporal patterns. At open sea sites, where transient anoxic conditions prevail, richness of both AOA and AOB was lowest and communities were dominated by organisms with gene signatures unique to the GoF. Given the importance of nitrification as a link between the fixation of nitrogen and its removal from aquatic environments, the low diversity of ammonia-oxidizing microbes across the GoF could be of relevance for ecosystem resilience in the face of rapid global environmental changes.


Assuntos
Amônia/química , Archaea/metabolismo , Bactérias/metabolismo , Sedimentos Geológicos , Oceanos e Mares , Archaea/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias/genética , Países Bálticos , Biodiversidade , DNA Arqueal/genética , DNA Bacteriano/genética , Regulação da Expressão Gênica em Archaea/fisiologia , Biblioteca Gênica , Oxirredução , Filogenia , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Fatores de Tempo
9.
Isotopes Environ Health Stud ; 48(2): 313-26, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22288425

RESUMO

Nitrification is a crucial process in sediment nitrogen cycling. We compared two (15)N tracer-based nitrification measurement techniques (isotope pairing technique (IPT) combined with (15)N nitrate pool dilution and (15)N ammonium oxidation) and three different (15)N analyses from bottom water nitrate (ammonia diffusion, denitrifier and SPINMAS) in a sediment mesocosm. The (15)N nitrate pool dilution technique combined with IPT can be used to quantify the in situ nitrification, but the minimum detection limit for the total nitrification is higher than that in the (15)N ammonium oxidation technique. The (15)N ammonium oxidation technique, however, is not applicable for sediments that have high ammonium content. If nitrate concentration and the amount of (15)N label in the sample are low, the (15)N nitrate analysis should be done with the denitrifier method. In higher (15)N concentrations, the less sensitive SPINMAS method can also be applied. The ammonia diffusion method is not suitable for bottom water (15)N nitrate analyses.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Nitratos/análise , Nitrificação , Interpretação Estatística de Dados , Desnitrificação , Finlândia , Isótopos de Nitrogênio/análise , Oxirredução
10.
Environ Sci Technol ; 43(10): 3412-20, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19544833

RESUMO

Hypoxia, a growing worldwide problem, has been intermittently present in the modern Baltic Sea since its formation ca. 8000 cal. yr BP. However, both the spatial extent and intensity of hypoxia have increased with anthropogenic eutrophication due to nutrient inputs. Physical processes, which control stratification and the renewal of oxygen in bottom waters, are important constraints on the formation and maintenance of hypoxia. Climate controlled inflows of saline water from the North Sea through the Danish Straits is a critical controlling factor governing the spatial extent and duration of hypoxia. Hypoxia regulates the biogeochemical cycles of both phosphorus (P) and nitrogen (N) in the water column and sediments. Significant amounts of P are currently released from sediments, an order of magnitude larger than anthropogenic inputs. The Baltic Sea is unique for coastal marine ecosystems experiencing N losses in hypoxic waters below the halocline. Although benthic communities in the Baltic Sea are naturally constrained by salinity gradients, hypoxia has resulted in habitat loss over vast areas and the elimination of benthic fauna, and has severely disrupted benthic food webs. Nutrient load reductions are needed to reduce the extent, severity, and effects of hypoxia.


Assuntos
Oxigênio/análise , Oxigênio/metabolismo , Água do Mar/química , Anaerobiose , Países Bálticos , Clima , Oceanos e Mares
11.
Microb Ecol ; 52(3): 513-22, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16944338

RESUMO

The community structure of the bacteria associated with Nodularia spumigena (Mertens) cyanobacterial aggregates in the Baltic Sea was studied with temperature gradient gel electrophoresis (TGGE), using a 16S rRNA gene fragment as a target. Various developmental stages of the aggregates and free-floating cyanobacterial filaments were sampled to reveal possible changes in associated microbial community structure during development and senescence of the aggregates. The microbial community structures of all samples differed, and the communities of young and decaying aggregates were separated by cluster analysis of the TGGE fingerprint data. Sequencing of the TGGE fragments indicated the presence of bacteria from the alpha-, beta-, and gamma-proteobacterial groups, as well as members of Cytophaga-Flexibacter-Bacteroides lineages and gram-positive Actinobacteria spp. The majority of the Nodularia-associated sequences were not closely related to previously reported 16S rDNA sequences from the Baltic Sea or any other environment. The structure of the bacterial assemblage reflects the environmental changes associated with the succession and decay of the cyanobacterial aggregates. In addition, the sequence data suggest that the N. spumigena (Mertens) blooms in the Baltic Sea may host thus far uncharacterized bacterial species.


Assuntos
Biodiversidade , Nodularia , Filogenia , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Eletroforese em Gel de Ágar , Nodularia/classificação , Nodularia/genética , Nodularia/crescimento & desenvolvimento , Oceanos e Mares , Reação em Cadeia da Polimerase , Dinâmica Populacional , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
12.
FEMS Microbiol Ecol ; 45(2): 83-96, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19719619

RESUMO

Abstract A cyanobacterial bloom in the Gulf of Finland, Baltic Sea, was sampled throughout the development and senescence of aggregates in August 1999. While conditions inside the aggregates were favourable for denitrification (rich in nitrogen and carbon, with anoxic microzones), essentially none was detected by a sensitive isotope pairing method. Polymerase chain reaction-based methods, targeting functional genes encoding the key enzymes of denitrification and nitrification processes (nirS, nirK, amoA), revealed that the non-aggregated filaments harboured amoA gene fragments with high similarity to Nitrosospira amoA sequences, as well as both types of nitrite reductase genes, nirS and nirK. Only the nirS-type nitrite reductase gene and no amoA was detected in aggregated filaments. Thus, despite optimal environmental conditions and genetic potential for denitrification, the blooms of filamentous nitrogen-fixing cyanobacteria must be seen solely as a source, and not as a sink of nitrogen in the Baltic Sea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA