Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(5): 1243-1251.e12, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31080070

RESUMO

The crystal structure of the ß2-adrenergic receptor (ß2AR) bound to the G protein adenylyl cyclase stimulatory G protein (Gs) captured the complex in a nucleotide-free state (ß2AR-Gsempty). Unfortunately, the ß2AR-Gsempty complex does not provide a clear explanation for G protein coupling specificity. Evidence from several sources suggests the existence of a transient complex between the ß2AR and GDP-bound Gs protein (ß2AR-GsGDP) that may represent an intermediate on the way to the formation of ß2AR-Gsempty and may contribute to coupling specificity. Here we present a structure of the ß2AR in complex with the carboxyl terminal 14 amino acids from Gαs along with the structure of the GDP-bound Gs heterotrimer. These structures provide evidence for an alternate interaction between the ß2AR and Gs that may represent an intermediate that contributes to Gs coupling specificity.


Assuntos
Adenilil Ciclases/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Modelos Moleculares , Receptores Adrenérgicos beta 2/química , Humanos , Relação Estrutura-Atividade
2.
Nature ; 629(8014): 1182-1191, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480881

RESUMO

G-protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by stimulating guanine nucleotide exchange in the Gα subunit1. To visualize this mechanism, we developed a time-resolved cryo-EM approach that examines the progression of ensembles of pre-steady-state intermediates of a GPCR-G-protein complex. By monitoring the transitions of the stimulatory Gs protein in complex with the ß2-adrenergic receptor at short sequential time points after GTP addition, we identified the conformational trajectory underlying G-protein activation and functional dissociation from the receptor. Twenty structures generated from sequential overlapping particle subsets along this trajectory, compared to control structures, provide a high-resolution description of the order of main events driving G-protein activation in response to GTP binding. Structural changes propagate from the nucleotide-binding pocket and extend through the GTPase domain, enacting alterations to Gα switch regions and the α5 helix that weaken the G-protein-receptor interface. Molecular dynamics simulations with late structures in the cryo-EM trajectory support that enhanced ordering of GTP on closure of the α-helical domain against the nucleotide-bound Ras-homology domain correlates with α5 helix destabilization and eventual dissociation of the G protein from the GPCR. These findings also highlight the potential of time-resolved cryo-EM as a tool for mechanistic dissection of GPCR signalling events.


Assuntos
Microscopia Crioeletrônica , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Receptores Adrenérgicos beta 2 , Humanos , Sítios de Ligação , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/efeitos dos fármacos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/ultraestrutura , Fatores de Tempo , Ativação Enzimática/efeitos dos fármacos , Domínios Proteicos , Estrutura Secundária de Proteína , Transdução de Sinais/efeitos dos fármacos
3.
Cell ; 158(1): 121-31, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24995983

RESUMO

The extent to which bacterial ribosomes and the significantly larger eukaryotic ribosomes share the same mechanisms of ribosomal elongation is unknown. Here, we present subnanometer resolution cryoelectron microscopy maps of the mammalian 80S ribosome in the posttranslocational state and in complex with the eukaryotic eEF1A⋅Val-tRNA⋅GMPPNP ternary complex, revealing significant differences in the elongation mechanism between bacteria and mammals. Surprisingly, and in contrast to bacterial ribosomes, a rotation of the small subunit around its long axis and orthogonal to the well-known intersubunit rotation distinguishes the posttranslocational state from the classical pretranslocational state ribosome. We term this motion "subunit rolling." Correspondingly, a mammalian decoding complex visualized in substates before and after codon recognition reveals structural distinctions from the bacterial system. These findings suggest how codon recognition leads to GTPase activation in the mammalian system and demonstrate that in mammalia subunit rolling occurs during tRNA selection.


Assuntos
Mamíferos/metabolismo , Ribossomos/química , Sequência de Aminoácidos , Animais , Anticódon/metabolismo , Códon/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Dados de Sequência Molecular , Elongação Traducional da Cadeia Peptídica , RNA de Transferência/metabolismo , Coelhos , Saccharomyces cerevisiae/metabolismo , Tetrahymena thermophila/metabolismo
4.
Mol Cell ; 81(5): 905-921.e5, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497605

RESUMO

Adhesion G protein-coupled receptors (aGPCRs)/family B2 GPCRs execute critical tasks during development and the operation of organs, and their genetic lesions are associated with human disorders, including cancers. Exceptional structural aGPCR features are the presence of a tethered agonist (TA) concealed within a GPCR autoproteolysis-inducing (GAIN) domain and their non-covalent heteromeric two-subunit layout. How the TA is poised for activation while maintaining this delicate receptor architecture is central to conflicting signaling paradigms that either involve or exclude aGPCR heterodimer separation. We investigated this matter in five mammalian aGPCR homologs (ADGRB3, ADGRE2, ADGRE5, ADGRG1, and ADGRL1) and demonstrate that intact aGPCR heterodimers exist at the cell surface, that the core TA region becomes unmasked in the cleaved GAIN domain, and that intra-GAIN domain movements regulate the level of tethered agonist exposure, thereby likely controlling aGPCR activity. Collectively, these findings delineate a unifying mechanism for TA-dependent signaling of intact aGPCRs.


Assuntos
Antígenos CD/química , Proteínas do Tecido Nervoso/química , Peptídeos/química , Receptores Acoplados a Proteínas G/química , Receptores de Peptídeos/química , Sequência de Aminoácidos , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Sítios de Ligação , Células COS , Chlorocebus aethiops , Cristalografia por Raios X , Expressão Gênica , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteólise , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais
5.
Trends Biochem Sci ; 48(8): 726-739, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37349240

RESUMO

Adhesion-type G protein-coupled receptors (aGPCRs) have long resisted approaches to resolve the structural details of their heptahelical transmembrane (7TM) domains. Single-particle cryogenic electron microscopy (cryo-EM) has recently produced aGPCR 7TM domain structures for ADGRD1, ADGRG1, ADGRG2, ADGRG3, ADGRG4, ADGRG5, ADGRF1, and ADGRL3. We review the unique properties, including the position and conformation of their activating tethered agonist (TA) and signaling motifs within the 7TM bundle, that the novel structures have helped to identify. We also discuss questions that the kaleidoscope of novel aGPCR 7TM domain structures have left unanswered. These concern the relative positions, orientations, and interactions of the 7TM and GPCR autoproteolysis-inducing (GAIN) domains with one another. Clarifying their interplay remains an important goal of future structural studies on aGPCRs.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Adesão Celular , Relação Estrutura-Atividade , Receptores Acoplados a Proteínas G/química , Membrana Celular , Domínios e Motivos de Interação entre Proteínas
6.
Nucleic Acids Res ; 52(W1): W132-W139, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38647044

RESUMO

The possible effects of mutations on stability and function of a protein can only be understood in the context of protein 3D structure. The MutationExplorer webserver maps sequence changes onto protein structures and allows users to study variation by inputting sequence changes. As the user enters variants, the 3D model evolves, and estimated changes in energy are highlighted. In addition to a basic per-residue input format, MutationExplorer can also upload an entire replacement sequence. Previously the purview of desktop applications, such an upload can back-mutate PDB structures to wildtype sequence in a single step. Another supported variation source is human single nucelotide polymorphisms (SNPs), genomic coordinates input in VCF format. Structures are flexibly colorable, not only by energetic differences, but also by hydrophobicity, sequence conservation, or other biochemical profiling. Coloring by interface score reveals mutation impacts on binding surfaces. MutationExplorer strives for efficiency in user experience. For example, we have prepared 45 000 PDB depositions for instant retrieval and initial display. All modeling steps are performed by Rosetta. Visualizations leverage MDsrv/Mol*. MutationExplorer is available at: http://proteinformatics.org/mutation_explorer/.


Assuntos
Internet , Modelos Moleculares , Mutação , Conformação Proteica , Proteínas , Software , Proteínas/genética , Proteínas/química , Humanos , Gráficos por Computador , Termodinâmica
7.
Bioinformatics ; 39(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37018142

RESUMO

MOTIVATION: The SmoothT software and webservice offers the construction of pathways from an ensemble of conformations. The user provides an archive of molecule conformations in Protein Databank (PDB) format, from which a starting and a final conformation need to be selected. The individual PDB files need to contain an energy value or score, estimating the quality of the respective confirmation. Additionally, the user has to provide a root-mean-square deviation (RMSD) cut-off, below which conformations are considered neighboring. From this, SmoothT constructs a graph that connects similar conformations. RESULTS: SmoothT returns the energetically most favorable pathway within in this graph. This pathway is directly displayed as interactive animation using the NGL viewer. Simultaneously, the energy along the pathway is plotted, highlighting the conformation that is currently displayed in the 3D window. AVAILABILITY AND IMPLEMENTATION: SmoothT is available as webservice at: http://proteinformatics.org/smoothT. Examples, a tutorial, and FAQs can be found there. Ensembles up to 2 GB (compressed) can be uploaded. Results will be stored for 5 days. The server is completely free and requires no registration. The C++ source code is available at: https://github.com/starbeachlab/smoothT.


Assuntos
Computadores , Proteínas , Proteínas/química , Conformação Molecular , Software , Bases de Dados de Proteínas , Conformação Proteica , Internet
8.
Nucleic Acids Res ; 50(W1): W29-W35, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35609986

RESUMO

The AlignMe web server is dedicated to accurately aligning sequences of membrane proteins, a particularly challenging task due to the strong evolutionary divergence and the low compositional complexity of hydrophobic membrane-spanning proteins. AlignMe can create pairwise alignments of either two primary amino acid sequences or two hydropathy profiles. The web server for AlignMe has been continuously available for >10 years, supporting 1000s of users per year. Recent improvements include anchoring, multiple submissions, and structure visualization. Anchoring is the ability to constrain a position in an alignment, which allows expert information about related residues in proteins to be incorporated into an alignment without manual modification. The original web interface to the server limited the user to one alignment per submission, hindering larger scale studies. Now, batches of alignments can be initiated with a single submission. Finally, to provide structural context for the relationship between proteins, sequence similarity can now be mapped onto one or more structures (or structural models) of the proteins being aligned, by links to MutationExplorer, a web-based visualization tool. Together with a refreshed user interface, these features further enhance an important resource in the membrane protein community. The AlignMe web server is freely available at https://www.bioinfo.mpg.de/AlignMe/.


Assuntos
Proteínas de Membrana , Software , Proteínas de Membrana/genética , Sequência de Aminoácidos , Algoritmos , Alinhamento de Sequência , Internet
9.
Nucleic Acids Res ; 50(W1): W483-W489, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35639717

RESUMO

Molecular dynamics simulation is a proven technique for computing and visualizing the time-resolved motion of macromolecules at atomic resolution. The MDsrv is a tool that streams MD trajectories and displays them interactively in web browsers without requiring advanced skills, facilitating interactive exploration and collaborative visual analysis. We have now enhanced the MDsrv to further simplify the upload and sharing of MD trajectories and improve their online viewing and analysis. With the new instance, the MDsrv simplifies the creation of sessions, which allows the exchange of MD trajectories with preset representations and perspectives. An important innovation is that the MDsrv can now access and visualize trajectories from remote datasets, which greatly expands its applicability and use, as the data no longer needs to be accessible on a local server. In addition, initial analyses such as sequence or structure alignments, distance measurements, or RMSD calculations have been implemented, which optionally support visual analysis. Finally, based on Mol*, MDsrv now provides faster and more efficient visualization of even large trajectories compared to its predecessor tool NGL.


Assuntos
Visualização de Dados , Internet , Simulação de Dinâmica Molecular , Software , Computadores , Navegador
10.
Trends Biochem Sci ; 44(11): 902-913, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31301982

RESUMO

Molecular dynamics (MD) simulations monitor time-resolved motions of macromolecules. While visualization of MD trajectories allows an instant and intuitive understanding of dynamics and function, so far mainly static representations are provided in the published literature. Recent advances in browser technology may allow for the sharing of trajectories through interactive visualization on the web. We believe that providing intuitive and interactive visualization, along with related protocols and analysis data, promotes understanding, reliability, and reusability of MD simulations. Existing barriers for sharing MD simulations are discussed and emerging solutions are highlighted. We predict that interactive visualization of MD trajectories will quickly be adopted by researchers, research consortiums, journals, and funding agencies to gather and distribute results from MD simulations via the web.


Assuntos
Substâncias Macromoleculares/química , Simulação de Dinâmica Molecular , Gráficos por Computador , Conformação Molecular , Simulação de Dinâmica Molecular/tendências , Reprodutibilidade dos Testes , Software , Interface Usuário-Computador
11.
Nat Methods ; 17(8): 777-787, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32661425

RESUMO

G-protein-coupled receptors (GPCRs) are involved in numerous physiological processes and are the most frequent targets of approved drugs. The explosion in the number of new three-dimensional (3D) molecular structures of GPCRs (3D-GPCRome) over the last decade has greatly advanced the mechanistic understanding and drug design opportunities for this protein family. Molecular dynamics (MD) simulations have become a widely established technique for exploring the conformational landscape of proteins at an atomic level. However, the analysis and visualization of MD simulations require efficient storage resources and specialized software. Here we present GPCRmd (http://gpcrmd.org/), an online platform that incorporates web-based visualization capabilities as well as a comprehensive and user-friendly analysis toolbox that allows scientists from different disciplines to visualize, analyze and share GPCR MD data. GPCRmd originates from a community-driven effort to create an open, interactive and standardized database of GPCR MD simulations.


Assuntos
Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G/química , Software , Metaboloma , Modelos Moleculares , Conformação Proteica
13.
Nucleic Acids Res ; 49(W1): W685-W690, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34107038

RESUMO

We present an updated version of the Voronoia service that enables fully automated analysis of the atomic packing density of macromolecules. Voronoia combines previous efforts to analyse 3D protein and RNA structures into a single service, combined with state-of-the-art online visualization. Voronoia uses the Voronoi cell method to calculate the free space between neighbouring atoms to estimate van der Waals interactions. Compared to other methods that derive van der Waals interactions by calculating solvent-free surfaces, it explicitly considers volume or packing defects. Large internal voids refer either to water molecules or ions unresolved by X-ray crystallography or cryo-EM, cryptic ligand binding pockets, or parts of a structural model that require further refinement. Voronoia is, therefore mainly used for functional analyses of 3D structures and quality assessments of structural models. Voronoia 4-ever updates the database of precomputed packing densities of PDB entries, allows uploading multiple structures, adds new filter options and facilitates direct access to the results through intuitive display with the NGL viewer. Voronoia is available at: htttp://proteinformatics.org/voronoia.


Assuntos
Conformação Proteica , Software , Modelos Moleculares , RNA/química
14.
Proc Natl Acad Sci U S A ; 117(37): 23096-23105, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868434

RESUMO

The ß2-adrenergic receptor (ß2AR) is a prototypical G protein-coupled receptor (GPCR) that preferentially couples to the stimulatory G protein Gs and stimulates cAMP formation. Functional studies have shown that the ß2AR also couples to inhibitory G protein Gi, activation of which inhibits cAMP formation [R. P. Xiao, Sci. STKE 2001, re15 (2001)]. A crystal structure of the ß2AR-Gs complex revealed the interaction interface of ß2AR-Gs and structural changes upon complex formation [S. G. Rasmussen et al., Nature 477, 549-555 (2011)], yet, the dynamic process of the ß2AR signaling through Gs and its preferential coupling to Gs over Gi is still not fully understood. Here, we utilize solution nuclear magnetic resonance (NMR) spectroscopy and supporting molecular dynamics (MD) simulations to monitor the conformational changes in the G protein coupling interface of the ß2AR in response to the full agonist BI-167107 and Gs and Gi1 These results show that BI-167107 stabilizes conformational changes in four transmembrane segments (TM4, TM5, TM6, and TM7) prior to coupling to a G protein, and that the agonist-bound receptor conformation is different from the G protein coupled state. While most of the conformational changes observed in the ß2AR are qualitatively the same for Gs and Gi1, we detected distinct differences between the ß2AR-Gs and the ß2AR-Gi1 complex in intracellular loop 2 (ICL2). Interactions with ICL2 are essential for activation of Gs These differences between the ß2AR-Gs and ß2AR-Gi1 complexes in ICL2 may be key determinants for G protein coupling selectivity.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Benzoxazinas/farmacologia , Sítios de Ligação/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
15.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175560

RESUMO

In this proof-of-principle study, we systematically studied the potential of Raman spectroscopy for detecting pre-analytical delays in blood serum samples. Spectra from 330 samples from a liver cirrhosis cohort were acquired over the course of eight days, stored one day at room temperature, and stored subsequently at 4 °C. The spectra were then used to train Convolutional Neural Networks (CNN) to predict the delay to sample examination. We achieved 90% accuracy for binary classification of the serum samples in the groups "without delay" versus "delayed". Spectra recorded on the first day could be distinguished clearly from all subsequent measurements. Distinguishing between spectra taken in the range from the second to the last day seems to be possible as well, but currently, with an accuracy of approximately 70% only. Importantly, filtering out the fluorescent background significantly reduces the precision of detection.


Assuntos
Redes Neurais de Computação , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Cirrose Hepática
16.
Molecules ; 28(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771089

RESUMO

G protein-coupled receptors can adopt many different conformational states, each of them exhibiting different restraints towards downstream signaling pathways. One promising strategy to identify and quantify this conformational landscape is to introduce a cysteine at a receptor site sensitive to different states and label this cysteine with a probe for detection. Here, the application of NMR of hyperpolarized 129Xe for the detection of the conformational states of human neuropeptide Y2 receptor is introduced. The xenon trapping cage molecule cryptophane-A attached to a cysteine in extracellular loop 2 of the receptor facilitates chemical exchange saturation transfer experiments without and in the presence of native ligand neuropeptide Y. High-quality spectra indicative of structural states of the receptor-cage conjugate were obtained. Specifically, five signals could be assigned to the conjugate in the apo form. After the addition of NPY, one additional signal and subtle modifications in the persisting signals could be detected. The correlation of the spectroscopic signals and structural states was achieved with molecular dynamics simulations, suggesting frequent contact between the xenon trapping cage and the receptor surface but a preferred interaction with the bound ligand.


Assuntos
Cisteína , Imageamento por Ressonância Magnética , Humanos , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Xenônio/química , Neuropeptídeo Y
17.
Angew Chem Int Ed Engl ; 62(35): e202302003, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37205715

RESUMO

G protein-coupled receptors initiate signal transduction in response to ligand binding. Growth hormone secretagogue receptor (GHSR), the focus of this study, binds the 28 residue peptide ghrelin. While structures of GHSR in different states of activation are available, dynamics within each state have not been investigated in depth. We analyze long molecular dynamics simulation trajectories using "detectors" to compare dynamics of the apo and ghrelin-bound states yielding timescale-specific amplitudes of motion. We identify differences in dynamics between apo and ghrelin-bound GHSR in the extracellular loop 2 and transmembrane helices 5-7. NMR of the GHSR histidine residues reveals chemical shift differences in these regions. We evaluate timescale specific correlation of motions between residues of ghrelin and GHSR, where binding yields a high degree of correlation for the first 8 ghrelin residues, but less correlation for the helical end. Finally, we investigate the traverse of GHSR over a rugged energy landscape via principal component analysis.


Assuntos
Grelina , Receptores de Grelina , Humanos , Receptores de Grelina/metabolismo , Grelina/metabolismo , Transdução de Sinais , Espectroscopia de Ressonância Magnética
18.
Nucleic Acids Res ; 48(W1): W54-W59, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32484557

RESUMO

Internal water molecules play an essential role in the structure and function of membrane proteins including G protein-coupled receptors (GPCRs). However, technical limitations severely influence the number and certainty of observed water molecules in 3D structures. This may compromise the accuracy of further structural studies such as docking calculations or molecular dynamics simulations. Here we present HomolWat, a web application for incorporating water molecules into GPCR structures by using template-based modelling of homologous water molecules obtained from high-resolution structures. While there are various tools available to predict the positions of internal waters using energy-based methods, the approach of borrowing lacking water molecules from homologous GPCR structures makes HomolWat unique. The tool can incorporate water molecules into a protein structure in about a minute with around 85% of water recovery. The web server is freely available at http://lmc.uab.es/homolwat.


Assuntos
Receptores Acoplados a Proteínas G/química , Software , Água/química , Internet , Modelos Moleculares , Conformação Proteica , Receptor 5-HT2A de Serotonina/química
19.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409344

RESUMO

The angiotensin II (Ang II) type 1 receptor (AT1R) is involved in the regulation of blood pressure (through vasoconstriction) and water and ion homeostasis (mediated by interaction with the endogenous agonist). AT1R can also be activated by auto-antibodies (AT1R-Abs), which are associated with manifold diseases, such as obliterative vasculopathy, preeclampsia and systemic sclerosis. Knowledge of the molecular mechanisms related to AT1R-Abs binding and associated signaling cascade (dys-)regulation remains fragmentary. The goal of this study was, therefore, to investigate details of the effects of AT1R-Abs on G-protein signaling and subsequent cell proliferation, as well as the putative contribution of the three extracellular receptor loops (ELs) to Abs-AT1R signaling. AT1R-Abs induced nuclear factor of activated T-cells (NFAT) signaling, which reflects Gq/11 and Gi activation. The impact on cell proliferation was tested in different cell systems, as well as activation-triggered receptor internalization. Blockwise alanine substitutions were designed to potentially investigate the role of ELs in AT1R-Abs-mediated effects. First, we demonstrate that Ang II-mediated internalization of AT1R is impeded by binding of AT1R-Abs. Secondly, exclusive AT1R-Abs-induced Gq/11 activation is most significant for NFAT stimulation and mediates cell proliferation. Interestingly, our studies also reveal that ligand-independent, baseline AT1R activation of Gi signaling has, in turn, a negative effect on cell proliferation. Indeed, inhibition of Gi basal activity potentiates proliferation triggered by AT1R-Abs. Finally, although AT1R containing EL1 and EL3 blockwise alanine mutations were not expressed on the human embryonic kidney293T (HEK293T) cell surface, we at least confirmed that parts of EL2 are involved in interactions between AT1R and Abs. This current study thus provides extended insights into the molecular action of AT1R-Abs and associated mechanisms of interrelated pathogenesis.


Assuntos
Anticorpos , Receptor Tipo 1 de Angiotensina , Alanina , Angiotensina II , Anticorpos/farmacologia , Proliferação de Células , Células HEK293 , Humanos , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo
20.
Nucleic Acids Res ; 46(W1): W310-W314, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29788317

RESUMO

Cryo-electron microscopy (cryo-EM) is a standard method to determine the three-dimensional structures of molecular complexes. However, easy to use tools for modeling of protein segments into cryo-EM maps are sparse. Here, we present the FragFit web-application, a web server for interactive modeling of segments of up to 35 amino acids length into cryo-EM density maps. The fragments are provided by a regularly updated database containing at the moment about 1 billion entries extracted from PDB structures and can be readily integrated into a protein structure. Fragments are selected based on geometric criteria, sequence similarity and fit into a given cryo-EM density map. Web-based molecular visualization with the NGL Viewer allows interactive selection of fragments. The FragFit web-application, accessible at http://proteinformatics.de/FragFit, is free and open to all users, without any login requirements.


Assuntos
Internet , Proteínas/química , Software , Aminoácidos/química , Aminoácidos/genética , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Proteica , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA