Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(21): 14600-14609, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38748814

RESUMO

We constructed a photoanode comprising the homogeneous water oxidation catalyst (WOC) Na8K8[Co9(H2O)6(OH)3(HPO4)2(PW9O34)3] (Co9POM) and nanoporous n-type TiO2 photoelectrodes (henceforth "TiO2-Co9POM") by first anchoring the cationic 3-aminopropyltrimethoxysilane (APS) ligand on a metal oxide light absorber, followed by treatment of the metal oxide-APS with a solution of the polyoxometalate WOC. The resulting TiO2-Co9POM photoelectrode exhibits a 3-fold oxygen evolution photocurrent enhancement compared to bare TiO2 in aqueous acidic conditions. Three-element (Co 2p, W 4f, and O 1s) X-ray photoelectron spectroscopy and Raman spectroscopy studies before and after use indicate that surface-bound Co9POM retains its structural integrity throughout all photoelectrochemical water oxidation studies reported here. Extensive charge-transfer mechanistic studies by photoelectrochemical techniques and transient absorption spectroscopy elucidate that Co9POM serves as an efficient WOC, extracting photogenerated holes from TiO2 on the picosecond time scale. This is the first comprehensive mechanistic investigation elucidating the roles of polyoxometalates in POM-photoelectrode hybrid oxygen evolution reaction systems.

2.
J Am Chem Soc ; 145(5): 2860-2869, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36715560

RESUMO

Photoelectrochemical solar fuel generation at the semiconductor/liquid interface consists of multiple elementary steps, including charge separation, recombination, and catalytic reactions. While the overall incident light-to-current conversion efficiency (IPCE) can be readily measured, identifying the microscopic efficiency loss processes remains difficult. Here, we report simultaneous in situ transient photocurrent and transient reflectance spectroscopy (TRS) measurements of titanium dioxide-protected gallium phosphide photocathodes for water reduction in photoelectrochemical cells. Transient reflectance spectroscopy enables the direct probe of the separated charge carriers responsible for water reduction to follow their kinetics. Comparison with transient photocurrent measurement allows the direct probe of the initial charge separation quantum efficiency (ϕCS) and provides support for a transient photocurrent model that divides IPCE into the product of quantum efficiencies of light absorption (ϕabs), charge separation (ϕCS), and photoreduction (ϕred), i.e., IPCE = ϕabsϕCSϕred. Our study shows that there are two general key loss pathways: recombination within the bulk GaP that reduces ϕCS and interfacial recombination at the junction that decreases ϕred. Although both loss pathways can be reduced at a more negative applied bias, for GaP/TiO2, the initial charge separation loss is the key efficiency limiting factor. Our combined transient reflectance and photocurrent study provides a time-resolved view of microscopic steps involved in the overall light-to-current conversion process and provides detailed insights into the main loss pathways of the photoelectrochemical system.

3.
Inorg Chem ; 62(14): 5822-5830, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36977374

RESUMO

A recent report established that the tetrabutylammonium (TBA) salt of hexavanadopolymolybdate TBA4H5[PMo6V6O40] (PV6Mo6) serves as the redox buffer with Cu(II) as a co-catalyst for aerobic deodorization of thiols in acetonitrile. Here, we document the profound impact of vanadium atom number (x = 0-4 and 6) in TBA salts of PVxMo12-xO40(3+x)- (PVMo) on this multicomponent catalytic system. The PVMo cyclic voltammetric peaks from 0 to -2000 mV vs Fc/Fc+ under catalytic conditions (acetonitrile, ambient T) are assigned and clarify that the redox buffering capability of the PVMo/Cu catalytic system derives from the number of steps, the number of electrons transferred each step, and the potential ranges of each step. All PVMo are reduced by varying numbers of electrons, from 1 to 6, in different reaction conditions. Significantly, PVMo with x ≤ 3 not only has much lower activity than when x > 3 (for example, the turnover frequencies (TOF) of PV3Mo9 and PV4Mo8 are 8.9 and 48 s-1, respectively) but also, unlike the latter, cannot maintain steady reduction states when the Mo atoms in these polyoxometalate (POMs) are also reduced. Stopped-flow kinetics measurements reveal that Mo atoms in Keggin PVMo exhibit much slower electron transfer rates than V atoms. There are two kinetic arguments: (a) In acetonitrile, the first formal potential of PMo12 is more positive than that of PVMo11 (-236 and -405 mV vs Fc/Fc+); however, the initial reduction rates are 1.06 × 10-4 s-1 and 0.036 s-1 for PMo12 and PVMo11, respectively. (b) In aqueous sulfate buffer (pH = 2), a two-step kinetics is observed for PVMo11 and PV2Mo10, where the first and second steps are assigned to reduction of the V and Mo centers, respectively. Since fast and reversible electron transfers are key for the redox buffering behavior, the slower electron transfer kinetics of Mo preclude these centers functioning in redox buffering that maintains the solution potential. We conclude that PVMo with more vanadium atoms allows the POM to undergo more and faster redox changes, which enables the POM to function as a redox buffer dictating far higher catalytic activity.

4.
Inorg Chem ; 62(5): 2404-2414, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36696689

RESUMO

The control of the solution electrochemical potential as well as pH impacts products in redox reactions, but the former gets far less attention. Redox buffers facilitate the maintenance of potentials and have been noted in diverse cases, but they have not been a component of catalytic systems. We report a catalytic system that contains its own built-in redox buffer. Two highly synergistic components (a) the tetrabutylammonium salt of hexavanadopolymolybdate TBA4H5[PMo6V6O40] (PV6Mo6) and (b) Cu(ClO4)2 in acetonitrile catalyze the aerobic oxidative deodorization of thiols by conversion to the corresponding nonodorous disulfides at 23 °C (each catalyst alone is far less active). For example, the reaction of 2-mercaptoethanol with ambient air gives a turnover number (TON) = 3 × 102 in less than one hour with a turnover frequency (TOF) of 6 × 10-2 s-1 with respect to PV6Mo6. Multiple electrochemical, spectroscopic, and other methods establish that (1) PV6Mo6, a multistep and multielectron redox buffering catalyst, controls the speciation and the ratio of Cu(II)/Cu(I) complexes and thus keeps the solution potential in different narrow ranges by involving multiple POM redox couples and simultaneously functions as an oxidation catalyst that receives electrons from the substrate; (2) Cu catalyzes two processes simultaneously, oxidation of the RSH by PV6Mo6 and reoxidation of reduced PV6Mo6 by O2; and (3) the analogous polytungstate-based system, TBA4H5[PW6V6O40] (PV6W6), has nearly identical cyclic voltammograms (CV) as PV6Mo6 but has almost no catalytic activity: it does not exhibit self-redox buffering.

5.
Inorg Chem ; 61(16): 6252-6262, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35416667

RESUMO

Mixed 3d metal oxides are some of the most promising water oxidation catalysts (WOCs), but it is very difficult to know the locations and percent occupancies of different 3d metals in these heterogeneous catalysts. Without such information, it is hard to quantify catalysis, stability, and other properties of the WOC as a function of the catalyst active site structure. This study combines the site selective synthesis of a homogeneous WOC with two adjacent 3d metals, [Co2Ni2(PW9O34)2]10- (Co2Ni2P2) as a tractable molecular model for CoNi oxide, with the use of multiwavelength synchrotron X-radiation anomalous dispersion scattering (synchrotron XRAS) that quantifies both the location and percent occupancy of Co (∼97% outer-central-belt positions only) and Ni (∼97% inner-central-belt positions only) in Co2Ni2P2. This mixed-3d-metal complex catalyzes water oxidation an order of magnitude faster than its isostructural analogue, [Co4(PW9O34)2]10- (Co4P2). Four independent and complementary lines of evidence confirm that Co2Ni2P2 and Co4P2 are the principal WOCs and that Co2+(aq) is not. Density functional theory (DFT) studies revealed that Co4P2 and Co2Ni2P2 have similar frontier orbitals, while stopped-flow kinetic studies and DFT calculations indicate that water oxidation by both complexes follows analogous multistep mechanisms, including likely Co-OOH formation, with the energetics of most steps being lower for Co2Ni2P2 than for Co4P2. Synchrotron XRAS should be generally applicable to active-site-structure-reactivity studies of multi-metal heterogeneous and homogeneous catalysts.

6.
Nano Lett ; 21(19): 8017-8024, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34569798

RESUMO

Nanoscale oxide layer protected semiconductor photoelectrodes show enhanced stability and performance for solar fuels generation, although the mechanism for the performance enhancement remains unclear due to a lack of understanding of the microscopic interfacial field and its effects. Here, we directly probe the interfacial fields at p-GaP electrodes protected by n-TiO2 and its effect on charge carriers by transient reflectance spectroscopy. Increasing the TiO2 layer thickness from 0 to 35 nm increases the field in the GaP depletion region, enhancing the rate and efficiency of interfacial electron transfer from the GaP to TiO2 on the ps time scale as well as retarding interfacial recombination on the microsecond time scale. This study demonstrates a general method for providing a microscopic view of the photogenerated charge carrier's pathway and loss mechanisms from the bulk of the electrode to the long-lived separated charge at the interface that ultimately drives the photoelectrochemical reactions.


Assuntos
Óxidos , Titânio , Eletrodos , Luz Solar
7.
Arch Sex Behav ; 50(6): 2485-2505, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34355336

RESUMO

Two studies examined the proposal that implicit and explicit sexual motives are associated with the experience of pleasure in sexual situations, as well as with seeking out sexual pleasure. In Study 1, implicit and explicit motive scores of 145 heterosexually identified women and 152 heterosexually identified men were demonstrated to be independently associated with the experience of pleasure in response to videos of female-male sexual behavior, more consistently so for women than men. The implicit and explicit motive scales were also associated with the frequency of viewing erotic materials in daily life. The experience of pleasure within sexual relationships was additionally shown to be associated with sexual motives, although primarily implicit motives. In Study 2 involving 139 women and 65 men, implicit motive scales were associated with ratings of interest in a potential romantic partner. The results support the conceptualization of the two instruments as measures of sexual motivation. The difference between implicit versus explicit measures in the pattern of correlations involving acquainted versus non-acquainted individuals is consistent with research on ideal partner preference.


Assuntos
Motivação , Prazer , Literatura Erótica , Feminino , Humanos , Masculino , Comportamento Sexual
8.
J Comput Chem ; 40(1): 212-221, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30284306

RESUMO

We describe a bulk adjusted linear combination of atomic orbitals (BA-LCAO) approach for nanoparticles. In this method, we apply a many-body scaling function (in similar manner as in the environment-modified total energy based tight-binding method) to the DFT-derived diatomic AO interaction potentials (like in the conventional orbital-based density-functional tight binding approach) strictly according to atomic valences acquired naturally in a bulk structure. This modification, (a) facilitates all atom orbital-based electronic structure calculations of charge carrier dynamics in nanoscale structures with a molecular acceptor, and (b) allows to closely match high-level density functional calculation data (previously adjusted to the available experimental findings) for bulk structures. To advance practical application of the BA-LCAO approach we parameterize the Hamiltonian of wurtzite CdSe by fitting its band structure to a high-level DFT reference, corrected for experimentally measured band edges. Here, unlike in conventional DFTB approach, we: (1) use hydrogen-like AOs for the basis as exact atomic eigenfunctions, while orbital energies of which are taken from experimentally measured ionization potentials, and (2) parameterize the many-body scaling functions rather than the atomic wavefunctions. Development of this approach and parameters is guided by our goals to devise a method capable of simultaneously treating the problems of (i) interfacial electron/hole transfer between finite, variable size nanoparticles and electron scavenging molecules, and (ii) high-energy electronic transitions (Auger transitions) that mediate multi-exciton decay in quantum dots. Electronic structure results are described for CdSe quantum dots of various sizes. © 2018 Wiley Periodicals, Inc.

9.
J Chem Phys ; 150(12): 124704, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30927884

RESUMO

In this work, we use wavefunction engineering by varying the size of Quantum Dots (QDs) and tuning the delocalization (or diffuseness) of frontier orbitals of an acceptor molecule to modulate charge transfer dynamics at the QD/molecule interface. For this purpose, we apply our recently developed bulk-adjusted linear combination of atomic orbitals (BA-LCAO) approach for nanostructures and a density functional theory (DFT) for the acceptor molecules. These electronic structure calculations, combined with extensive molecular dynamics simulations using a fragmented molecular mechanics (FraMM) force field, reveal intimate details of charge transfer across the QD/Acceptor interface. For the spherical wurtzite-(CdSe)201 and (CdSe)693 nanostructures, as model QDs with respective 2.8 and 4.1 nm diameters, and anthraquinone-2,3-dicarboxylic acid and its derivatives with the 7-OH, 7-OF, 10-BH, and 10-CH2 substituents, as model molecular acceptors, we find that (1) both the electron donating and withdrawing groups greatly enhance hole transfer by means of diffusing the acceptor HOMO; (2) electron transfer is affected only by the electron donating groups; (3) solvent effects are largely negligible for the orbital overlaps, and (4) consistent with spatial confinement theories, the electron density of the smaller QD penetrates farther into the vacuum than the corresponding density of the larger QD leading to stronger coupling with the acceptor. These findings suggest that (a) one can effectively control charge transfer across the QD/molecule interface by either changing the size of the QD or by tuning diffuseness of frontier orbitals of the acceptor molecule and (b) the combination of the recently developed BA-LCAO approach for QDs with a DFT for the acceptor molecules, facilitated by the use of the FraMM force field and extensive molecular dynamics simulations, provide qualitatively accurate description of charge transfer dynamics at the QD/acceptor interface.

11.
J Exp Biol ; 221(Pt 18)2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30065038

RESUMO

Western painted turtles (Chrysemys picta bellii) tolerate anoxic submergence longer than any other tetrapod, surviving more than 170 days at 3°C. This ability is due, in part, to the shell and skeleton simultaneously releasing calcium and magnesium carbonates, and sequestering lactate and H+ to prevent lethal decreases in body fluid pH. We evaluated the effects of anoxic submergence at 3°C on various material properties of painted turtle bone after 60, 130 and 167-170 days, and compared them with those of normoxic turtles held at the same temperature for the same time periods. To assess changes in the mechanical properties, beams (4×25 mm) were milled from the plastron and broken in a three-point flexural test. Bone mineral density, CO2 concentration (a measure of total bone HCO3-/CO32-) and elemental composition were measured using microcomputed tomography, HCO3-/CO32- titration and inductively coupled plasma mass spectrometry (ICP-MS), respectively. Tissue mineral density of the sampled bone beams was not significantly altered by 167-170 days of aquatic overwintering in anoxic or normoxic water, but bone CO2 and Mg were depleted in anoxic compared with normoxic turtles. At this time point, the plastron beams from anoxic turtles yielded at stresses that were significantly smaller and strains that were significantly greater than the plastron beams of normoxic turtles. When data from anoxic and normoxic turtles were pooled, plastron beams had a diminished elastic modulus after 167-170 days compared with those of control turtles sampled on day 1, indicating an effect of prolonged housing of the turtles in 3°C water without access to basking sites. There were no changes in the mechanical properties of the plastron beams at any of the earlier time points in either group. We conclude that anoxic hibernation can weaken the painted turtle's plastron, but likely only after durations that exceed what it might naturally experience. The duration of aquatic overwintering, regardless of oxygenation state, is likely to be an important factor determining the mechanical properties of the turtle shell during spring emergence.


Assuntos
Exoesqueleto/química , Calcificação Fisiológica , Hibernação/fisiologia , Tartarugas/fisiologia , Acidose/fisiopatologia , Acidose/veterinária , Adaptação Fisiológica , Anaerobiose , Animais , Fenômenos Biomecânicos , Feminino , Masculino , Microtomografia por Raio-X/veterinária
12.
Inorg Chem ; 57(1): 311-318, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29235865

RESUMO

Polyoxometalates (POMs) and in particularly Keggin heteropolytungstates are much studied and commercially important catalysts for dioxygen-based oxidation processes. The rate-limiting step in many POM-catalyzed O2-based oxidations is reoxidation of the reduced POM by O2. We report here that this reoxidation process, as represented by the one-electron-reduced Keggin complexes POMred (α-PW12O404- and α-SiVW11O406-) reacting with O2, is efficiently catalyzed by a combination of copper and iron complexes. The reaction kinetics and mechanism have been comprehensively studied in sulfate and phosphate buffer at pH 1.8. The catalytic pathway includes a reversible reaction between Cu(II) and Fe(II), followed by a fast oxidation of POMred by Fe(III) and Cu(I) by O2 to regenerate Fe(II) and Cu(II). The proposed reaction mechanism quantitatively describes the experimental kinetic curves over a wide range of experimental conditions. Since the oxidized forms, α-PW12O403- and α-SiVW11O405-, are far better oxidants of organic substrates than the previously studied POMs, α-SiW12O404- and α-AlW12O405-, this synergistic Fe/Cu cocatalysis of reduced-POM reoxidation could well facilitate significant new O2/air-based processes.

13.
Inorg Chem ; 57(15): 8831-8840, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30015477

RESUMO

The generation of five types of Ln(III)-containing tungstotellurates(VI), dimeric (DMAH)12Na2[H10(WO2){Ln(H2O)5(TeW18O65)}2]· nH2O (abbreviated as {Ln2Te2W37}; Ln = Eu, Gd, or Tb; DMAH = dimethylammonium), tetrameric (DMAH)21Na7[H16{Ln(H2O)5(TeW18O64)}4]· nH2O (abbreviated as {Ln4Te4W72}, Ln = Eu or Gd), 2:2 dimeric (DMAH)12[H6{Tb(H2O)3(TeW17O61)}2]·25H2O (abbreviated as {Tb2Te2W34}), 1:1 monosubstituted (DMAH)7Na2[H2Tb(H2O)4(TeW17O61)]·21H2O (abbreviated as {TbTeW17}), and three-dimensional polymer (DMAH)2[HTb(H2O)4{TeW6O24}]·14H2O (abbreviated as {TbTeW6} n), provides insight into the rich condensation chemistry of lacunary and other Dawson-type polyoxometalates. The pH and the type of Ln3+ source both dictate which of these new complexes form. To our knowledge, {Ln4Te4W72} is the highest-nuclearity tungstotellurate to date, and {Tb2Te2W34} and {TbTeW17} contain the first lacunary {TeW17O61}. Electrospray ionization mass spectra analyses indicate that the Dawson-like building blocks, {TeW18O65} and {TeW17O61}, found in solid structures are also present in solution. The intense photoluminescence (characteristic green emission) of {TbTeW6} n, 100× greater than those of {Tb2Te2W37}, {Tb2Te2W34}, and {TbTeW17}, is explained by analysis of all 4 X-ray structures and multiple structure-intensity correlations.

14.
Phys Chem Chem Phys ; 20(6): 4554-4562, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29376165

RESUMO

Two isostructural cobalt containing polyoxometalate water oxidation catalysts, [Co4(H2O)2(α-PW9O34)2]10- (Co4P2) and [Co4(H2O)2(α-VW9O34)2]10- (Co4V2), exhibit large differences in their catalytic performance. The substitution of phosphorus centers in Co4P2 with redox-active vanadium centers in Co4V2 leads to electronic structure modifications. Evidence for the significance of the vanadium centers to catalysis, predicted by theory, was found from soft X-ray absorption (XAS) and resonant inelastic X-ray scattering (RIXS). The XAS and RIXS spectra determine the electronic structure of the cobalt and vanadium sites in the pre-reaction state of both Co4V2 and Co4P2. High-energy resolution RIXS results reveal that Co4V2 possesses a smaller ligand field within the tetra-cobalt core and a cobalt-to-vanadium charge transfer band. The differences in electronic structures offer insights into the enhanced catalysis of Co4V2.

16.
J Am Chem Soc ; 139(2): 599-602, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28038315

RESUMO

Zr-based metal organic frameworks (MOFs) have been recently shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. We report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination of DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. These experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.

17.
Angew Chem Int Ed Engl ; 56(16): 4473-4477, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28322483

RESUMO

A novel double-anion complex, H13 [(CH3 )4 N]12 [PNb12 O40 (VV O)2 ⋅(VIV4 O12 )2 ]⋅22 H2 O (1), based on bicapped polyoxoniobate and tetranuclear polyoxovanadate was synthesized, characterized by routine techniques and used in the catalytic decontamination of chemical warfare agents. Under mild conditions, 1 catalyzes both hydrolysis of the nerve agent simulant, diethyl cyanophosphonate (DECP) and selective oxidation of the sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES). In the oxidative decontamination system 100 % CEES was transformed selectively to nontoxic 2-chloroethyl ethyl sulfoxide and vinyl ethyl sulfoxide using nearly stoichiometric 3 % aqueous H2 O2 with a turnover frequency (TOF) of 16 000 h-1 . Importantly, the catalytic activity is maintained even after ten recycles and CEES is completely decontaminated in 3 mins without formation of the highly toxic sulfone by-product. A three-step oxidative mechanism is proposed.

18.
Angew Chem Int Ed Engl ; 56(12): 3294-3298, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28198073

RESUMO

We report herein an interesting dynamic translocation process of countercations around one polyoxometalate(POM)-organic hybrid anionic cluster at various concentrations and temperatures. It was found that both electrostatic interactions and cation-π interactions regulate the position of small countercations around single clusters. The dynamic geometry and the symmetry of the hybrid macroions are largely affected by the type of counterions, as shown by nuclear magnetic resonance (NMR) spectroscopy studies and all-atom molecular dynamics simulation. It is also shown that electrostatic interactions dominate over cation-π interactions in determining the locations of the counterions in the current system.

19.
J Am Chem Soc ; 138(8): 2617-28, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26848832

RESUMO

Highly efficient electrocatalytic oxidation of ethanol and methanol has been achieved using the ruthenium-containing polyoxometalate molecular catalyst, [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2](10-) ([1(γ-SiW10O36)2](10-)). Voltammetric studies with dissolved and surface-confined forms of [1(γ-SiW10O36)2](10-) suggest that the oxidized forms of 1 can act as active catalysts for alcohol oxidation in both aqueous (over a wide pH range covering acidic, neutral, and alkaline) and alcohol media. Under these conditions, the initial form of 1 also exhibits considerable reactivity, especially in neutral solution containing 1.0 M NaNO3. To identify the oxidation products, preparative scale bulk electrolysis experiments were undertaken. The products detected by NMR, gas chromatography (GC), and GC-mass spectrometry from oxidation of ethanol are 1,1-diethoxyethane and ethyl acetate formed from condensation of acetaldehyde or acetic acid with excess ethanol. Similarly, the oxidation of methanol generates formaldehyde and formic acid which then condense with methanol to form dimethoxymethane and methyl formate, respectively. These results demonstrate that electrocatalytic oxidation of ethanol and methanol occurs via two- and four-electron oxidation processes to yield aldehydes and acids. The total faradaic efficiencies of electrocatalytic oxidation of both alcohols exceed 94%. The numbers of aldehyde and acid products per catalyst were also calculated and compared with the literature reported values. The results suggest that 1 is one of the most active molecular electrocatalysts for methanol and ethanol oxidation.

20.
Langmuir ; 32(48): 12856-12861, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934526

RESUMO

Two novel polyoxovanadate (POV)-containing fluorosurfactants, each with two hydrophobic fluorinated "tails" and one nanosized, hydrophilic, rigid POV "head group", are synthesized for the first time. They self-assemble into spherical, bilayer vesicles in acetonitrile/water mixed solvents, as evidenced by systemic studies using laser light scattering (LLS) and electron microscopy techniques. The vesicle sizes demonstrate dynamic change over different solvent compositions mainly as a result of the solvent swelling of the fluorocarbon chains, although the charge number on the POVs changes over the solvent polarity as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA