Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 591
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 149(5): 1008-22, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22579044

RESUMO

The presence of ribonucleotides in genomic DNA is undesirable given their increased susceptibility to hydrolysis. Ribonuclease (RNase) H enzymes that recognize and process such embedded ribonucleotides are present in all domains of life. However, in unicellular organisms such as budding yeast, they are not required for viability or even efficient cellular proliferation, while in humans, RNase H2 hypomorphic mutations cause the neuroinflammatory disorder Aicardi-Goutières syndrome. Here, we report that RNase H2 is an essential enzyme in mice, required for embryonic growth from gastrulation onward. RNase H2 null embryos accumulate large numbers of single (or di-) ribonucleotides embedded in their genomic DNA (>1,000,000 per cell), resulting in genome instability and a p53-dependent DNA-damage response. Our findings establish RNase H2 as a key mammalian genome surveillance enzyme required for ribonucleotide removal and demonstrate that ribonucleotides are the most commonly occurring endogenous nucleotide base lesion in replicating cells.


Assuntos
Replicação do DNA , Embrião de Mamíferos/metabolismo , Ribonuclease H/genética , Ribonuclease H/metabolismo , Ribonucleotídeos/metabolismo , Animais , Instabilidade Cromossômica , DNA Polimerase Dirigida por DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
J Neurosci ; 44(13)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38395617

RESUMO

Myelinating oligodendrocytes die in human disease and early in aging. Despite this, the mechanisms that underly oligodendrocyte death are not resolved and it is also not clear whether these mechanisms change as oligodendrocyte lineage cells are undergoing differentiation and maturation. Here, we used a combination of intravital imaging, single-cell ablation, and cuprizone-mediated demyelination, in both female and male mice, to discover that oligodendrocyte maturation dictates the dynamics and mechanisms of cell death. After single-cell phototoxic damage, oligodendrocyte precursor cells underwent programmed cell death within hours, differentiating oligodendrocytes died over several days, while mature oligodendrocytes took weeks to die. Importantly cells at each maturation stage all eventually died but did so with drastically different temporal dynamics and morphological features. Consistent with this, cuprizone treatment initiated a caspase-3-dependent form of rapid cell death in differentiating oligodendrocytes, while mature oligodendrocytes never activated this executioner caspase. Instead, mature oligodendrocytes exhibited delayed cell death which was marked by DNA damage and disruption in poly-ADP-ribose subcellular localization. Thus, oligodendrocyte maturation plays a key role in determining the mechanism of death a cell undergoes in response to the same insult. This means that oligodendrocyte maturation is important to consider when designing strategies for preventing cell death and preserving myelin while also enhancing the survival of new oligodendrocytes in demyelinating conditions.


Assuntos
Cuprizona , Doenças Desmielinizantes , Humanos , Camundongos , Masculino , Feminino , Animais , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Apoptose/fisiologia , Diferenciação Celular , Camundongos Endogâmicos C57BL
3.
Nat Prod Rep ; 41(4): 520-524, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38616726

RESUMO

A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as eugeniinaline A from Leuconotis eugeniifolia.


Assuntos
Produtos Biológicos , Produtos Biológicos/química , Estrutura Molecular
4.
Nat Prod Rep ; 41(1): 148, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38167909

RESUMO

Correction for 'Hot off the Press' by Robert A. Hill et al., Nat. Prod. Rep., 2023, 40, 1816-1821, https://doi.org/10.1039/d3np90052e.

5.
Nat Prod Rep ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365258

RESUMO

A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as asperochone A from Aspergillus sp. MMC-2.

6.
Nat Prod Rep ; 41(8): 1214-1218, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39093306

RESUMO

A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as nitidane from Heteromurus nitidus.


Assuntos
Produtos Biológicos , Produtos Biológicos/química , Estrutura Molecular , Poríferos/química
7.
Nat Prod Rep ; 41(6): 868-872, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38818703

RESUMO

A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products, such as penihemeroterpenoid A from Penicillium herquei.


Assuntos
Produtos Biológicos , Penicillium , Produtos Biológicos/química , Penicillium/química , Penicillium/metabolismo , Estrutura Molecular
8.
Planta ; 260(2): 54, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012577

RESUMO

MAIN CONCLUSION: phytoglobin1 positively regulates root bending in hypoxic Arabidopsis roots through regulation of ethylene response factors and auxin transport. Hypoxia-induced root bending is known to be mediated by the redundant activity of the group VII ethylene response factors (ERFVII) RAP2.12 and HRE2, causing changes in polar auxin transport (PAT). Here, we show that phytoglobin1 (Pgb1), implicated in hypoxic adaptation through scavenging of nitric oxide (NO), can alter root direction under low oxygen. Hypoxia-induced bending is exaggerated in roots over-expressing Pgb1 and attenuated in those where the gene is suppressed. These effects were attributed to Pgb1 repressing both RAP2.12 and HRE2. Expression, immunological and genetic data place Pgb1 upstream of RAP2.12 and HRE2 in the regulation of root bending in oxygen-limiting environments. The attenuation of slanting in Pgb1-suppressing roots was associated with depletion of auxin activity at the root tip because of depression in PAT, while exaggeration of root bending in Pgb1-over-expressing roots with the retention of auxin activity. Changes in PIN2 distribution patterns, suggestive of redirection of auxin movement during hypoxia, might contribute to the differential root bending responses of the transgenic lines. In the end, Pgb1, by regulating NO levels, controls the expression of 2 ERFVIIs which, in a cascade, modulate PAT and, therefore, root bending.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Oxigênio , Raízes de Plantas , Transdução de Sinais , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas , Etilenos/metabolismo , Óxido Nítrico/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transporte Biológico , Proteínas de Ligação a DNA
9.
Plant Physiol ; 193(2): 1416-1432, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37311198

RESUMO

Root growth in maize (Zea mays L.) is regulated by the activity of the quiescent center (QC) stem cells located within the root apical meristem. Here, we show that despite being highly hypoxic under normal oxygen tension, QC stem cells are vulnerable to hypoxic stress, which causes their degradation with subsequent inhibition of root growth. Under low oxygen, QC stem cells became depleted of starch and soluble sugars and exhibited reliance on glycolytic fermentation with the impairment of the TCA cycle through the depressed activity of several enzymes, including pyruvate dehydrogenase (PDH). This finding suggests that carbohydrate delivery from the shoot might be insufficient to meet the metabolic demand of QC stem cells during stress. Some metabolic changes characteristic of the hypoxic response in mature root cells were not observed in the QC. Hypoxia-responsive genes, such as PYRUVATE DECARBOXYLASE (PDC) and ALCOHOL DEHYDROGENASE (ADH), were not activated in response to hypoxia, despite an increase in ADH activity. Increases in phosphoenolpyruvate (PEP) with little change in steady-state levels of succinate were also atypical responses to low-oxygen tensions. Overexpression of PHYTOGLOBIN 1 (ZmPgb1.1) preserved the functionality of the QC stem cells during stress. The QC stem cell preservation was underpinned by extensive metabolic rewiring centered around activation of the TCA cycle and retention of carbohydrate storage products, denoting a more efficient energy production and diminished demand for carbohydrates under conditions where nutrient transport may be limiting. Overall, this study provides an overview of metabolic responses occurring in plant stem cells during oxygen deficiency.


Assuntos
Oxigênio , Raízes de Plantas , Raízes de Plantas/metabolismo , Oxigênio/metabolismo , Meristema/metabolismo , Células-Tronco , Hipóxia/metabolismo , Carboidratos
10.
PLoS Genet ; 17(4): e1009275, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33819267

RESUMO

Mammalian Hedgehog (HH) signalling pathway plays an essential role in tissue homeostasis and its deregulation is linked to rheumatological disorders. UBR5 is the mammalian homologue of the E3 ubiquitin-protein ligase Hyd, a negative regulator of the Hh-pathway in Drosophila. To investigate a possible role of UBR5 in regulation of the musculoskeletal system through modulation of mammalian HH signaling, we created a mouse model for specific loss of Ubr5 function in limb bud mesenchyme. Our findings revealed a role for UBR5 in maintaining cartilage homeostasis and suppressing metaplasia. Ubr5 loss of function resulted in progressive and dramatic articular cartilage degradation, enlarged, abnormally shaped sesamoid bones and extensive heterotopic tissue metaplasia linked to calcification of tendons and ossification of synovium. Genetic suppression of smoothened (Smo), a key mediator of HH signalling, dramatically enhanced the Ubr5 mutant phenotype. Analysis of HH signalling in both mouse and cell model systems revealed that loss of Ubr5 stimulated canonical HH-signalling while also increasing PKA activity. In addition, human osteoarthritic samples revealed similar correlations between UBR5 expression, canonical HH signalling and PKA activity markers. Our studies identified a crucial function for the Ubr5 gene in the maintenance of skeletal tissue homeostasis and an unexpected mode of regulation of the HH signalling pathway.


Assuntos
Artrite Reumatoide/genética , Proteínas de Drosophila/genética , Músculo Esquelético/metabolismo , Receptor Smoothened/genética , Ubiquitina-Proteína Ligases/genética , Animais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Cartilagem/crescimento & desenvolvimento , Cartilagem/metabolismo , Cartilagem/patologia , Condrócitos/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster/genética , Proteínas Hedgehog/genética , Homeostase/genética , Humanos , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Camundongos , Músculo Esquelético/patologia , Osteogênese/genética , Transdução de Sinais/genética , Tendões/metabolismo , Tendões/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA