Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(43): e2116122119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252029

RESUMO

Low-molecular-weight natural products from microbes are indispensable in the development of potent drugs. However, their biological roles within an ecological context often remain elusive. Here, we shed light on natural products from eukaryotic microorganisms that have the ability to transition from single cells to multicellular organisms: the social amoebae. These eukaryotes harbor a large number of polyketide biosynthetic genes in their genomes, yet virtually none of the corresponding products can be isolated or characterized. Using complementary molecular biology approaches, including CRISPR-Cas9, we generated polyketide synthase (pks5) inactivation and overproduction strains of the social amoeba Dictyostelium discoideum. Differential, untargeted metabolomics of wild-type versus mutant fruiting bodies allowed us to pinpoint candidate metabolites derived from the amoebal PKS5. Extrachromosomal expression of the respective gene led to the identification of a yellow polyunsaturated fatty acid. Analysis of the temporospatial production pattern of this compound in conjunction with detailed bioactivity studies revealed the polyketide to be a spore germination suppressor.


Assuntos
Amoeba , Produtos Biológicos , Dictyostelium , Policetídeos , Amoeba/genética , Produtos Biológicos/metabolismo , Dictyostelium/fisiologia , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo
2.
Microsc Microanal ; 29(6): 2014-2025, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37944034

RESUMO

Correlative microscopy is a powerful technique that combines the advantages of multiple imaging modalities to achieve a comprehensive understanding of investigated samples. For example, fluorescence microscopy provides unique functional contrast by imaging only specifically labeled components, especially in biological samples. However, the achievable structural information on the sample in its full complexity is limited. Here, the intrinsic label-free carbon contrast of water window soft X-ray microscopy can complement fluorescence images in a correlative approach ultimately combining nanoscale structural resolution with functional contrast. However, soft X-ray microscopes are complex and elaborate, and are usually installed on large-scale synchrotron radiation sources due to the demanding photon flux requirements. Yet, with modern high-power lasers it has become possible to generate sufficient photon flux from laser-produced plasmas, thus enabling laboratory-based setups. Here, we present a compact table-top soft X-ray microscope with an integrated epifluorescence modality for "in situ" correlative imaging. Samples remain in place when switching between modalities, ensuring identical measurement conditions and avoiding sample alteration or destruction. We demonstrate our new method by multimodal images of several exemplary samples ranging from nanoparticles to various multicolor labeled cell types. A structural resolution of down to 50 nm was reached.

3.
Cell Microbiol ; 23(11): e13389, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34460149

RESUMO

Predatory interactions among microbes are major evolutionary driving forces for biodiversity. The fungivorous amoeba Protostelium aurantium has a wide fungal food spectrum including foremost pathogenic members of the genus Candida. Here we show that upon phagocytic ingestion by the amoeba, Candida parapsilosis is confronted with an oxidative burst and undergoes lysis within minutes of processing in acidified phagolysosomes. On the fungal side, a functional genomic approach identified copper and redox homeostasis as primary targets of amoeba predation, with the highly expressed copper exporter gene CRP1 and the peroxiredoxin gene PRX1 contributing to survival when encountered with P. aurantium. The fungicidal activity was largely retained in intracellular vesicles of the amoebae. Following their isolation, the content of these vesicles induced immediate killing and lysis of C. parapsilosis in vitro. Proteomic analysis identified 56 vesicular proteins from P. aurantium. Although completely unknown proteins were dominant, many of them could be categorised as hydrolytic enzymes targeting the fungal cell wall, indicating that fungal cell wall structures are under selection pressure by predatory phagocytes in natural environments. TAKE AWAY: The amoeba Protostelium aurantium feeds on fungi, such as Candida parapsilosis. Ingested yeast cells are exposed to reactive oxygen species. A copper exporter and a peroxiredoxin contribute to fungal defence. Yeast cells undergo intracellular lysis. Lysis occurs via a cocktail of hydrolytic enzymes from intracellular vesicles.


Assuntos
Amoeba , Candida parapsilosis , Parede Celular , Homeostase , Homicídio , Oxirredução , Proteômica
4.
Microb Cell Fact ; 21(1): 217, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266656

RESUMO

BACKGROUND: The availability of new biological platform organisms to get access to innovative products and processes is fundamental for the progress in biotechnology and bioeconomy. The amoeba Dictyostelium discoideum represents a novel host system that has recently been employed for both the discovery of new natural products and as a cell factory for the production of bioactive compounds such as phytochemicals. However, an essential parameter to evaluate the potential of a new host system is the demonstration of its scalability to allow industrial applicability. Here, we aimed to develop a bioprocess for the production of olivetolic acid, the main precursor of cannabinoids synthesized by a recently engineered D. discoideum strain. RESULTS: In this study, a sophisticated approach is described to scale-up an amoeba-based polyketide production process in stirred tank bioreactors. Due to the shear sensitivity of the cell wall lacking amoebae, the maximum local energy dissipation rate (εmax) was selected as a measure for the hydromechanical stress level among different scales. By performing 1.6-L scale batch fermentations with different stress conditions, we determined a maximum tolerable εmax of 3.9 W/kg for D. discoideum. Further, we used this parameter as scale-up criterion to develop a bioprocess for olivetolic acid production starting from a 7-L stirred tank reactor to the industrially relevant 300-L scale with a product concentration of 4.8 µg/L, a productivity of 0.04 µg/L/h and a yield of 0.56 µg/g glucose. CONCLUSION: We developed a robust and reliable scale-up strategy for amoeba-based bioprocesses and evaluated its applicability for the production of the cannabinoid precursor olivetolic acid. By determining the maximum tolerable hydromechanical stress level for D. discoideum, we were able to scale-up the process from shake flasks to the 300-L stirred tank reactor without any yield reduction from cell shearing. Hence, we showed the scalability and biotechnological exploitation of amoeba-based processes that can provide a reasonable alternative to chemical syntheses or extractions of phytochemicals from plant biomass.


Assuntos
Amoeba , Produtos Biológicos , Canabinoides , Dictyostelium , Policetídeos , Reatores Biológicos , Glucose
5.
Beilstein J Org Chem ; 17: 1814-1827, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394757

RESUMO

The kingdom of fungi comprises a large and highly diverse group of organisms that thrive in diverse natural environments. One factor to successfully confront challenges in their natural habitats is the capability to synthesize defensive secondary metabolites. The genetic potential for the production of secondary metabolites in fungi is high and numerous potential secondary metabolite gene clusters have been identified in sequenced fungal genomes. Their production may well be regulated by specific ecological conditions, such as the presence of microbial competitors, symbionts or predators. Here we exemplarily summarize our current knowledge on identified secondary metabolites of the pathogenic fungus Aspergillus fumigatus and their defensive function against (microbial) predators.

6.
Environ Microbiol ; 21(5): 1809-1820, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30868709

RESUMO

Size and diverse morphologies pose a primary challenge for phagocytes such as innate immune cells and predatory amoebae when encountering fungal prey. Although filamentous fungi can escape phagocytic killing by pure physical constraints, unicellular spores and yeasts can mask molecular surface patterns or arrest phagocytic processing. Here, we show that the fungivorous amoeba Protostelium aurantium was able to adjust its killing and feeding mechanisms to these different cell shapes. Yeast-like fungi from the major fungal groups of basidiomycetes and ascomycetes were readily internalized by phagocytosis, except for the human pathogen Candida albicans whose mannoprotein coat was essential to escape recognition by the amoeba. Dormant spores of the filamentous fungus Aspergillus fumigatus also remained unrecognized, but swelling and the onset of germination induced internalization and intracellular killing by the amoeba. Mature hyphae of A. fumigatus were mostly attacked from the hyphal tip and killed by an actin-mediated invasion of fungal filaments. Our results demonstrate that predatory pressure imposed by amoebae in natural environments selects for distinct survival strategies in yeast and filamentous fungi but commonly targets the fungal cell wall as a crucial molecular pattern associated to prey and pathogens.


Assuntos
Amoeba/microbiologia , Fungos/fisiologia , Leveduras/fisiologia , Amoeba/fisiologia , Parede Celular , Fungos/genética , Fungos/crescimento & desenvolvimento , Fungos/isolamento & purificação , Hifas/genética , Hifas/crescimento & desenvolvimento , Fagocitose , Leveduras/genética , Leveduras/crescimento & desenvolvimento , Leveduras/isolamento & purificação
7.
Curr Genet ; 65(2): 523-538, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30324432

RESUMO

The acetyltransferase GcnE is part of the SAGA complex which regulates fungal gene expression through acetylation of chromatin. Target genes of the histone acetyltransferase GcnE include those involved in secondary metabolism and asexual development. Here, we show that the absence of GcnE not only abrogated conidiation, but also strongly impeded vegetative growth of hyphae in the human pathogenic fungus Aspergillus fumigatus. A yeast two-hybrid screen using a Saccharomyces cerevisiae strain whose tRNA molecules were specifically adapted to express A. fumigatus proteins identified two unprecedented proteins that directly interact with GcnE. Glutamine synthetase GlnA as well as a hypothetical protein located on chromosome 8 (GbpA) were identified as binding partners of GcnE and their interaction was confirmed in vivo via bimolecular fluorescence complementation. Phenotypic characterization of gbpA and glnA deletion mutants revealed a role for GbpA during conidiogenesis and confirmed the central role of GlnA in glutamine biosynthesis. The increase of glutamine synthetase activity in the absence of GcnE indicated that GcnE silences GlnA through binding. This finding suggests an expansion of the regulatory role of GcnE in A. fumigatus.


Assuntos
Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Expressão Gênica , Glutamina/biossíntese , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Aspergillus fumigatus/crescimento & desenvolvimento , Cromatografia Líquida , Clonagem Molecular , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Genes Fúngicos , Teste de Complementação Genética , Genótipo , Espectrometria de Massas , Microscopia de Fluorescência , Fenótipo , Mapeamento de Interação de Proteínas , Esporos Fúngicos
8.
Curr Genet ; 64(3): 589-598, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29098364

RESUMO

The tRNA population reflects the codon bias of the organism and affects the translation of heterologous target mRNA molecules. In this study, Saccharomyces cerevisiae strains with modified levels of rare tRNA were engineered, that allowed efficient generation of recombinant proteins with unfavorable codon usage. We established a novel synthetic tRNA expression cassette and verified functional nonsense suppressor tRNAGlnSCUA generation in a stop codon read-through assay with a modified ß-galactosidase reporter gene. Correlation between altered tRNA and protein level was shown by survival of copper sensitive S. cerevisiae cells in the presence of copper ions by an increased transcription of tRNAArgCCG molecules, recognizing rare codons in a modified CUP1 gene. Genome integration of tRNA expression cassette led to the generation of arginine-tRNA-adapted S. cerevisiae strains, which showed elevated tRNA levels (tRNAArgCCG, tRNAArgGCG and tRNAArgUCG) pairing to rare codons. The modified strain MNY3 revealed a considerably improved monitoring of protein-protein interaction from Aspergillus fumigatus bait and prey sequences in yeast two-hybrid experiments. In future, this principle to overcome limited recombinant protein expression by tRNA adaption of expression strains instead of codon adaption might provide new designer yeast cells for an efficient protein production and for improved genome-wide protein-protein interaction analyses.


Assuntos
RNA de Transferência de Arginina/genética , Saccharomyces cerevisiae/genética , Aspergillus fumigatus/genética , Códon , Códon de Terminação , Genes Fúngicos , RNA Fúngico/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Técnicas do Sistema de Duplo-Híbrido
9.
Infect Immun ; 84(6): 1866-1878, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27068092

RESUMO

Aspergillus fumigatus is the most common pathogenic mold infecting humans and a significant cause of morbidity and mortality in immunocompromised patients. In invasive pulmonary aspergillosis, A. fumigatus spores are inhaled into the lungs, undergoing germination and invasive hyphal growth. The fungus occludes and disrupts the blood vessels, leading to hypoxia and eventual tissue necrosis. The ability of this mold to adapt to hypoxia is regulated in part by the sterol regulatory element binding protein (SREBP) SrbA and the DscA to DscD Golgi E3 ligase complex critical for SREBP activation by proteolytic cleavage. Loss of the genes encoding these proteins results in avirulence. To identify novel regulators of hypoxia sensing, we screened the Neurospora crassa gene deletion library under hypoxia and identified a novel rhomboid family protease essential for hypoxic growth. Deletion of the A. fumigatus rhomboid homolog rbdA resulted in an inability to grow under hypoxia, hypersensitivity to CoCl2, nikkomycin Z, fluconazole, and ferrozine, abnormal swollen tip morphology, and transcriptional dysregulation-accurately phenocopying deletion of srbA. In vivo, rbdA deletion resulted in increased sensitivity to phagocytic killing, a reduced inflammatory Th1 and Th17 response, and strongly attenuated virulence. Phenotypic rescue of the ΔrbdA mutant was achieved by expression and nuclear localization of the N terminus of SrbA, including its HLH domain, further indicating that RbdA and SrbA act in the same signaling pathway. In summary, we have identified RbdA, a novel putative rhomboid family protease in A. fumigatus that mediates hypoxia adaptation and fungal virulence and that is likely linked to SrbA cleavage and activation.


Assuntos
Aspergilose/imunologia , Aspergillus fumigatus/patogenicidade , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Interações Hospedeiro-Patógeno , Peptídeo Hidrolases/genética , Animais , Antifúngicos/farmacologia , Aspergilose/genética , Aspergilose/microbiologia , Aspergilose/patologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/imunologia , Cobalto/farmacologia , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/imunologia , Hipóxia/imunologia , Hipóxia/microbiologia , Hipóxia/patologia , Hospedeiro Imunocomprometido , Larva/imunologia , Larva/microbiologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Mariposas/imunologia , Mariposas/microbiologia , Mutação , Neurospora crassa/genética , Neurospora crassa/imunologia , Neurospora crassa/patogenicidade , Peptídeo Hidrolases/imunologia , Transdução de Sinais , Esporos Fúngicos/genética , Esporos Fúngicos/imunologia , Esporos Fúngicos/patogenicidade , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/imunologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Virulência
10.
Mol Microbiol ; 93(3): 539-53, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24948085

RESUMO

The human pathogenic fungus Aspergillus fumigatus normally lives as a soil saprophyte. Its environment includes poorly oxygenated substrates that also occur during tissue invasive growth of the fungus in the human host. Up to now, few cellular factors have been identified that allow the fungus to efficiently adapt its energy metabolism to hypoxia. Here, we cultivated A. fumigatus in an O2 -controlled fermenter and analysed its responses to O2 limitation on a minute timescale. Transcriptome sequencing revealed several genes displaying a rapid and highly dynamic regulation. One of these genes was analysed in detail and found to encode fungoglobin, a previously uncharacterized member of the sensor globin protein family widely conserved in filamentous fungi. Besides low O2 , iron limitation also induced transcription, but regulation was not entirely dependent on the two major transcription factors involved in adaptation to iron starvation and hypoxia, HapX and SrbA respectively. The protein was identified as a functional haemoglobin, as binding of this cofactor was detected for the recombinant protein. Gene deletion in A. fumigatus confirmed that haem-binding fungoglobins are important for growth in microaerobic environments with O2 levels far lower than in hypoxic human tissue.


Assuntos
Adaptação Fisiológica , Aspergillus fumigatus/fisiologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Globinas/genética , Oxigênio/fisiologia , Aspergillus fumigatus/genética , Fermentação , Proteínas Fúngicas/fisiologia , Deleção de Genes , Globinas/fisiologia , Humanos , Hifas/crescimento & desenvolvimento , Hifas/ultraestrutura , Ferro/metabolismo , Mutação , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo , Transcriptoma
11.
Environ Microbiol ; 17(8): 2858-69, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25684622

RESUMO

Filamentous fungi represent classical examples for environmentally acquired human pathogens whose major virulence mechanisms are likely to have emerged long before the appearance of innate immune systems. In natural habitats, amoeba predation could impose a major selection pressure towards the acquisition of virulence attributes. To test this hypothesis, we exploited the amoeba Dictyostelium discoideum to study its interaction with Aspergillus fumigatus, two abundant soil inhabitants for which we found co-occurrence in various sites. Fungal conidia were efficiently taken up by D. discoideum, but ingestion was higher when conidia were devoid of the green fungal spore pigment dihydroxynaphtalene melanin, in line with earlier results obtained for immune cells. Conidia were able to survive phagocytic processing, and intracellular germination was initiated only after several hours of co-incubation which eventually led to a lethal disruption of the host cell. Besides phagocytic interactions, both amoeba and fungus secreted cross inhibitory factors which suppressed fungal growth or induced amoeba aggregation with subsequent cell lysis, respectively. On the fungal side, we identified gliotoxin as the major fungal factor killing Dictyostelium, supporting the idea that major virulence attributes, such as escape from phagocytosis and the secretion of mycotoxins are beneficial to escape from environmental predators.


Assuntos
Amoeba/microbiologia , Aspergillus fumigatus/patogenicidade , Dictyostelium/microbiologia , Gliotoxina/metabolismo , Solo/parasitologia , Cicloexanos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Humanos , Fagocitose , Sesquiterpenos/metabolismo , Esporos Fúngicos/patogenicidade , Virulência , Fatores de Virulência/fisiologia
12.
Curr Genet ; 61(3): 441-55, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25911540

RESUMO

Most eukaryotes require molecular oxygen for growth. In general, oxygen is the terminal electron acceptor of the respiratory chain and represents an important substrate for the biosynthesis of cellular compounds. However, in their natural environment, such as soil, and also during the infection, filamentous fungi are confronted with low levels of atmospheric oxygen. Transcriptome and proteome studies on the hypoxic response of filamentous fungi revealed significant alteration of the gene expression and protein synthesis upon hypoxia. These analyses discovered not only common but also species-specific responses to hypoxia with regard to NAD(+) regeneration systems and other metabolic pathways. A surprising outcome was that the induction of oxidative and nitrosative stress defenses during oxygen limitation represents a general trait of adaptation to hypoxia in many fungi. The interplay of these different stress responses is poorly understood, but recent studies have shown that adaptation to hypoxia contributes to virulence of pathogenic fungi. In this review, results on metabolic changes of filamentous fungi during adaptation to hypoxia are summarized and discussed.


Assuntos
Adaptação Biológica , Fungos/fisiologia , Estresse Fisiológico , Anaerobiose , Respiração Celular , Metabolismo Energético , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Oxirredução , Estresse Oxidativo , Consumo de Oxigênio , Fenótipo
13.
Appl Microbiol Biotechnol ; 99(23): 10151-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26278536

RESUMO

The opportunistic human pathogen Aspergillus fumigatus produces numerous different natural products. The genetic basis for the biosynthesis of a number of known metabolites has remained unknown. The gene cluster encoding for the biosynthesis of the conidia-bound metabolite trypacidin is of particular interest because of its antiprotozoal activity and possible role in the infection process. Here, we show that the genes encoding the biosynthesis enzymes of trypacidin reside within an orphan gene cluster in A. fumigatus. Genome mining identified tynC as an uncharacterized polyketide synthase with high similarity to known enzymes, whose products are structurally related to trypacidin including endocrocin and fumicycline. Gene deletion of tynC resulted in the complete absence of trypacidin production, which was fully restored when the mutant strain was complemented with the wild-type gene. When confronted with macrophages, the tynC deletion mutant conidia were more frequently phagocytosed than those of the parental wild-type strain. This was also found for phagocytic amoebae of the species Dictyostelium discoideum, which showed increased phagocytosis of ΔtynC conidia. Both macrophages and amoebae were also sensitive to trypacidin. Therefore, our results suggest that the conidium-bound trypacidin could have a protective function against phagocytes both in the environment and during the infection process.


Assuntos
Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Produtos Biológicos/metabolismo , Fatores Imunológicos/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Família Multigênica , Fagocitose/efeitos dos fármacos , Animais , Células Cultivadas , Dictyostelium/efeitos dos fármacos , Dictyostelium/fisiologia , Deleção de Genes , Teste de Complementação Genética , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Camundongos
14.
Eukaryot Cell ; 13(9): 1241-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25084861

RESUMO

Aspergillus fumigatus is an opportunistic, airborne pathogen that causes invasive aspergillosis in immunocompromised patients. During the infection process, A. fumigatus is challenged by hypoxic microenvironments occurring in inflammatory, necrotic tissue. To gain further insights into the adaptation mechanism, A. fumigatus was cultivated in an oxygen-controlled chemostat under hypoxic and normoxic conditions. Transcriptome analysis revealed a significant increase in transcripts associated with cell wall polysaccharide metabolism, amino acid and metal ion transport, nitrogen metabolism, and glycolysis. A concomitant reduction in transcript levels was observed with cellular trafficking and G-protein-coupled signaling. To learn more about the functional roles of hypoxia-induced transcripts, we deleted A. fumigatus genes putatively involved in reactive nitrogen species detoxification (fhpA), NAD(+) regeneration (frdA and osmA), nitrogen metabolism (niaD and niiA), and respiration (rcfB). We show that the nitric oxygen (NO)-detoxifying flavohemoprotein gene fhpA is strongly induced by hypoxia independent of the nitrogen source but is dispensable for hypoxic survival. By deleting the nitrate reductase gene niaD, the nitrite reductase gene niiA, and the two fumarate reductase genes frdA and osmA, we found that alternative electron acceptors, such as nitrate and fumarate, do not have a significant impact on growth of A. fumigatus during hypoxia, but functional mitochondrial respiratory chain complexes are essential under these conditions. Inhibition studies indicated that primarily complexes III and IV play a crucial role in the hypoxic growth of A. fumigatus.


Assuntos
Aspergilose/genética , Aspergillus fumigatus/metabolismo , Hipóxia Celular/genética , Respiração Celular/genética , Perfilação da Expressão Gênica , Aspergilose/microbiologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Sobrevivência Celular/genética , Proteínas Fúngicas/biossíntese , Humanos , Redes e Vias Metabólicas/genética , Oxigênio/metabolismo
15.
mBio ; 15(6): e0034224, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38747615

RESUMO

Amoebae are environmental predators feeding on bacteria, fungi, and other eukaryotic microbes. Predatory interactions alter microbial communities and impose selective pressure toward phagocytic resistance or escape which may, in turn, foster virulence attributes. The ubiquitous fungivorous amoeba Protostelium aurantium has a wide prey spectrum in the fungal kingdom but discriminates against members of the Saccharomyces clade, such as Saccharomyces cerevisiae and Candida glabrata. Here, we show that this prey discrimination among fungi is solely based on the presence of ubiquinone as an essential cofactor for the predator. While the amoeba readily fed on fungi with CoQ presenting longer isoprenyl side chain variants CoQ8-10, such as those from the Candida clade, it failed to proliferate on those with shorter CoQ variants, specifically from the Saccharomyces clade (CoQ6). Supplementing non-edible yeast with CoQ9 or CoQ10 rescued the growth of P. aurantium, highlighting the importance of a long isoprenyl side chain. Heterologous biosynthesis of CoQ9 in S. cerevisiae by introducing genes responsible for CoQ9 production from the evolutionary more basic Yarrowia lipolytica complemented the function of the native CoQ6. The results suggest that the use of CoQ6 among members of the Saccharomyces clade might have originated as a predatory escape strategy in fungal lineages and could be retained in organisms that were able to thrive by fermentation. IMPORTANCE: Ubiquinones (CoQ) are universal electron carriers in the respiratory chain of all aerobic bacteria and eukaryotes. Usually 8-10 isoprenyl units ensure their localization within the lipid bilayer. Members of the Saccharomyces clade among fungi are unique in using only 6. The reason for this is unclear. Here we provide evidence that the use of CoQ6 efficiently protects these fungi from predation by the ubiquitous fungivorous amoeba Protostelium aurantium which lacks its own biosynthetic pathway for this vitamin. The amoebae were starving on a diet of CoQ6 yeasts which could be complemented by either the addition of longer CoQs or the genetic engineering of a CoQ9 biosynthetic pathway.


Assuntos
Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Amoeba/microbiologia , Amoeba/genética , Yarrowia/genética , Yarrowia/metabolismo , Fungos/genética , Fungos/metabolismo , Fungos/fisiologia
16.
Curr Biol ; 33(13): 2646-2656.e4, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301202

RESUMO

As an endosymbiont of the ecologically and medically relevant fungus Rhizopus microsporus, the toxin-producing bacterium Mycetohabitans rhizoxinica faces myriad challenges, such as evading the host's defense mechanisms. However, the bacterial effector(s) that facilitate the remarkable ability of M. rhizoxinica to freely migrate within fungal hyphae have thus far remained unknown. Here, we show that a transcription activator-like (TAL) effector released by endobacteria is an essential symbiosis factor. By combining microfluidics with fluorescence microscopy, we observed enrichment of TAL-deficient M. rhizoxinica in side hyphae. High-resolution live imaging showed the formation of septa at the base of infected hyphae, leading to the entrapment of endobacteria. Using a LIVE/DEAD stain, we demonstrate that the intracellular survival of trapped TAL-deficient bacteria is significantly reduced compared with wild-type M. rhizoxinica, indicative of a protective host response in the absence of TAL proteins. Subversion of host defense in TAL-competent endobacteria represents an unprecedented function of TAL effectors. Our data illustrate an unusual survival strategy of endosymbionts in the host and provide deeper insights into the dynamic interactions between bacteria and eukaryotes.


Assuntos
Hifas , Efetores Semelhantes a Ativadores de Transcrição , Bactérias , Simbiose
17.
J Biol Chem ; 286(32): 27936-46, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21676878

RESUMO

The enzyme apolipoprotein N-acyltransferase (Lnt) is an integral membrane protein that catalyzes the last step in the post-translational modification of bacterial lipoproteins. Lnt undergoes covalent modification in the presence of phospholipids resulting in a thioester acyl-enzyme intermediate. It then transfers the acyl chain to the α-amino group of the N-terminal diacylglyceryl-modified cysteine of apolipoprotein, leading to the formation of mature triacylated lipoprotein. To gain insight into the catalytic mechanism of this two-step reaction, we overproduced and purified the enzyme of Escherichia coli and studied its N-acyltransferase activity using a novel in vitro assay. The purified enzyme was fully active, as judged by its ability to form a stable thioester acyl-enzyme intermediate and N-acylate the apo-form of the murein lipoprotein Lpp in vitro. Incorporation of [(3)H]palmitate and mass spectrometry analysis demonstrated that Lnt recognized the synthetic diacylglyceryl-modified lipopeptide FSL-1 as a substrate in a mixed micelle assay. Kinetics of Lnt using phosphatidylethanolamine as an acyl donor and FSL-1 as a substrate were consistent with a ping-pong type mechanism, demonstrating slow acyl-enzyme intermediate formation and rapid N-acyl transfer to the apolipopeptide in vitro. In contrast to earlier in vitro observations, the N-acyltransferase activity was strongly affected by the phospholipid headgroup and acyl chain composition.


Assuntos
Aciltransferases/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Lipoproteínas/química , Fosfolipídeos/química , Aciltransferases/genética , Aciltransferases/isolamento & purificação , Aciltransferases/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Cinética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato/fisiologia
18.
Curr Opin Biotechnol ; 77: 102766, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35944344

RESUMO

The identification of novel platform organisms for the production and discovery of small molecules is of high interest for the pharmaceutical industry. In particular, the structural complexity of most natural products with therapeutic potential restricts an industrial production since chemical syntheses often require complex multistep routes. The amoeba Dictyostelium discoideum can be easily cultivated in bioreactors due to its planktonic growth behavior and contains numerous polyketide and terpene synthase genes with only a few compounds being already elucidated. Hence, the amoeba both bears a wealth of hidden natural products and allows for the development of new bioprocesses for existing pharmaceuticals. In this mini review, we present D. discoideum as a novel platform for the production of complex secondary metabolites and discuss its suitability for industrial processes. We also provide initial insights into future bioprocesses, both involving bacterial coculture setups and for the production of plant-based pharmaceuticals.


Assuntos
Amoeba , Produtos Biológicos , Dictyostelium , Amoeba/microbiologia , Bactérias , Produtos Biológicos/metabolismo , Dictyostelium/genética , Dictyostelium/metabolismo , Preparações Farmacêuticas/metabolismo
19.
Nat Biotechnol ; 40(5): 751-758, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34992245

RESUMO

Aromatic polyketides are natural polyphenolic compounds with a broad spectrum of pharmacological activities. Production of those metabolites in the model organisms Escherichia coli and Saccharomyces cerevisiae has been limited by the extensive cellular engineering needed for the coordinated biosynthesis of polyketides and their precursors. In contrast, the amoeba Dictyostelium discoideum is a native producer of secondary metabolites and harbors a wide, but largely unexplored, repertoire of genes for the biosynthesis of polyketides and terpenoids. Here we present D. discoideum as an advantageous chassis for the production of aromatic polyketides. By expressing its native and cognate plant polyketide synthase genes in D. discoideum, we demonstrate production of phlorocaprophenone, methyl-olivetol, resveratrol and olivetolic acid (OA), which is the central intermediate in the biosynthesis of cannabinoids. To facilitate OA synthesis, we further engineered an amoeba/plant inter-kingdom hybrid enzyme that produced OA from primary metabolites in two enzymatic steps, providing a shortcut in a synthetic cannabinoid pathway using the D. discoideum host system.


Assuntos
Amoeba , Canabinoides , Dictyostelium , Policetídeos , Amoeba/metabolismo , Canabinoides/metabolismo , Dictyostelium/genética , Dictyostelium/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
20.
ACS Chem Biol ; 17(2): 386-394, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35023724

RESUMO

Sphingofungins belong to a group of structurally related sphingolipid inhibitors produced by fungi, which specifically inhibit serine palmitoyl transferases, enzymes catalyzing the initial step during sphingolipid biosynthesis. Sphingolipids are integral parts of the eukaryotic cell membrane, and disturbances in their homeostasis have been linked to various human diseases. It has been suggested that external interventions, via sphingolipid inhibitors, may represent a promising approach for alternative therapies. Here, we identified and elucidated the biosynthetic gene cluster responsible for the biosynthesis of sphingofungins B, C, and D in Aspergillus fumigatus. Moreover, in vitro analyses have shown that sphingofungin biosynthesis starts with the condensation of a C18 polyketide with the uncommon substrate aminomalonate. Furthermore, the investigations on sphingofungin E and F produced by Paecilomyces variotii pointed out that different aminomalonate derivatives are used as substrates for those chemical variants. This research boosts knowledge on the general biosynthesis of sphingolipid inhibitors in fungi.


Assuntos
Fungos , Esfingolipídeos , Aspergillus fumigatus/metabolismo , Fungos/metabolismo , Humanos , Serina/metabolismo , Esfingolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA