Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
PLoS Biol ; 22(3): e3002573, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38547237

RESUMO

The rising interest and success in deploying inherited microorganisms and cytoplasmic incompatibility (CI) for vector control strategies necessitate an explanation of the CI mechanism. Wolbachia-induced CI manifests in the form of embryonic lethality when sperm from Wolbachia-bearing testes fertilize eggs from uninfected females. Embryos from infected females however survive to sustain the maternally inherited symbiont. Previously in Drosophila melanogaster flies, we demonstrated that CI modifies chromatin integrity in developing sperm to bestow the embryonic lethality. Here, we validate these findings using wMel-transinfected Aedes aegypti mosquitoes released to control vector-borne diseases. Once again, the prophage WO CI proteins, CifA and CifB, target male gametic nuclei to modify chromatin integrity via an aberrant histone-to-protamine transition. Cifs are not detected in the embryo, and thus elicit CI via the nucleoprotein modifications established pre-fertilization. The rescue protein CifA in oogenesis localizes to stem cell, nurse cell, and oocyte nuclei, as well as embryonic DNA during embryogenesis. Discovery of the nuclear targeting Cifs and altered histone-to-protamine transition in both Aedes aegypti mosquitoes and D. melanogaster flies affirm the Host Modification Model of CI is conserved across these host species. The study also newly uncovers the cell biology of Cif proteins in the ovaries, CifA localization in the embryos, and an impaired histone-to-protamine transition during spermiogenesis of any mosquito species. Overall, these sperm modification findings may enable future optimization of CI efficacy in vectors or pests that are refractory to Wolbachia transinfections.


Assuntos
Aedes , Arbovírus , Wolbachia , Animais , Feminino , Masculino , Drosophila melanogaster/genética , Histonas/genética , Mosquitos Vetores , Sêmen , Drosophila/genética , Cromatina , Protaminas/genética
2.
PLoS Pathog ; 20(1): e1011935, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38198491

RESUMO

The body temperature of mosquitoes, like most insects, is dictated by the environmental temperature. Climate change is increasing the body temperature of insects and thereby altering physiological processes such as immune proficiency. Aging also alters insect physiology, resulting in the weakening of the immune system in a process called senescence. Although both temperature and aging independently affect the immune system, it is unknown whether temperature alters the rate of immune senescence. Here, we evaluated the independent and combined effects of temperature (27°C, 30°C and 32°C) and aging (1, 5, 10 and 15 days old) on the melanization immune response of the adult female mosquito, Anopheles gambiae. Using a spectrophotometric assay that measures phenoloxidase activity (a rate limiting enzyme) in hemolymph, and therefore, the melanization potential of the mosquito, we discovered that the strength of melanization decreases with higher temperature, aging, and infection. Moreover, when the temperature is higher, the aging-dependent decline in melanization begins at a younger age. Using an optical assay that measures melanin deposition on the abdominal wall and in the periostial regions of the heart, we found that melanin is deposited after infection, that this deposition decreases with aging, and that this aging-dependent decline is accelerated by higher temperature. This study demonstrates that higher temperature accelerates immune senescence in mosquitoes, with higher temperature uncoupling physiological age from chronological age. These findings highlight the importance of investigating the consequences of climate change on how disease transmission by mosquitoes is affected by aging.


Assuntos
Anopheles , Melaninas , Animais , Feminino , Temperatura , Imunidade , Temperatura Alta
3.
Annu Rev Entomol ; 65: 121-143, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31585504

RESUMO

Although the insect circulatory system is involved in a multitude of vital physiological processes, it has gone grossly understudied. This review highlights this critical physiological system by detailing the structure and function of the circulatory organs, including the dorsal heart and the accessory pulsatile organs that supply hemolymph to the appendages. It also emphasizes how the circulatory system develops and ages and how, by means of reflex bleeding and functional integration with the immune system, it supports mechanisms for defense against predators and microbial invaders, respectively. Beyond that, this review details evolutionary trends and novelties associated with this system, as well as the ways in which this system also plays critical roles in thermoregulation and tracheal ventilation in high-performance fliers. Finally, this review highlights how novel discoveries could be harnessed for the control of vector-borne diseases and for translational medicine, and it details principal knowledge gaps that necessitate further investigation.


Assuntos
Insetos/fisiologia , Envelhecimento/fisiologia , Animais , Evolução Biológica , Regulação da Temperatura Corporal , Sistema Cardiovascular , Hemolinfa/fisiologia , Sistema Imunitário , Insetos/anatomia & histologia , Metamorfose Biológica
4.
J Exp Biol ; 223(Pt 15)2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32561636

RESUMO

The circulatory and immune systems of mosquitoes are functionally integrated. An infection induces the migration of hemocytes to the dorsal vessel, and specifically, to the regions surrounding the ostia of the heart. These periostial hemocytes phagocytose pathogens in the areas of the hemocoel that experience the highest hemolymph flow. Here, we investigated whether a bacterial infection affects cardiac rhythmicity in the African malaria mosquito, Anopheles gambiae We discovered that infection with Escherichia coli, Staphylococcus aureus and Staphylococcus epidermidis, but not Micrococcus luteus, reduces the mosquito heart rate and alters the proportional directionality of heart contractions. Infection does not alter the expression of genes encoding crustacean cardioactive peptide (CCAP), FMRFamide, corazonin, neuropeptide F or short neuropeptide F, indicating that they do not drive the cardiac phenotype. Infection upregulates the transcription of two superoxide dismutase (SOD) genes, catalase and a glutathione peroxidase, but dramatically induces upregulation of nitric oxide synthase (NOS) in both the heart and hemocytes. Within the heart, nitric oxide synthase is produced by periostial hemocytes, and chemically inhibiting the production of nitric oxide using l-NAME reverses the infection-induced cardiac phenotype. Finally, infection induces the upregulation of two lysozyme genes in the heart and other tissues, and treating mosquitoes with lysozyme reduces the heart rate in a manner reminiscent of the infection phenotype. These data demonstrate an exciting new facet of the integration between the immune and circulatory systems of insects, whereby a hemocyte-produced factor with immune activity, namely nitric oxide, modulates heart physiology.


Assuntos
Anopheles , Infecções Bacterianas , Animais , Frequência Cardíaca , Hemócitos , Óxido Nítrico
5.
J Exp Biol ; 221(Pt 12)2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29724775

RESUMO

The primary pump of the circulatory system of insects is a dorsal vessel that traverses the length of the insect. The anterior portion, located in the head, neck and thorax, is the aorta, and the posterior portion, located in the abdomen, is the heart. Here, we characterize the structure and function of the aorta and conical chamber of the mosquito, Anopheles gambiae The aorta begins in the head with an excurrent opening located above the dorsal pharyngeal plate and ends at the thoraco-abdominal junction where it joins the conical chamber of the heart. The aorta lacks ostia, and based on the diameter of the vessel as well as the density and helical orientation of muscle, consists of three regions: the anterior aorta, the bulbous chamber, and the posterior aorta. The aorta contracts in the anterograde direction, but these contractions are independent of heart contractions and do not play a major role in hemolymph propulsion. Intravital imaging of the venous channels, the first abdominal segment and the neck revealed that hemolymph only travels through the aorta in the anterograde direction, and does so only during periods of anterograde heart flow. Furthermore, hemolymph only enters the thoraco-abdominal ostia of the conical chamber when the heart contracts in the retrograde direction, propelling this hemolymph to the posterior of the body. Finally, very few hemocytes associate with the aorta, and unlike what is seen in the periostial regions of the heart, infection does not induce the aggregation of hemocytes on the aorta.


Assuntos
Anopheles/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Hemócitos/fisiologia , Animais , Anopheles/citologia , Aorta/citologia , Aorta/fisiologia , Feminino , Hemócitos/citologia
6.
J Invertebr Pathol ; 151: 21-31, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29111355

RESUMO

During all life stages, mosquitoes are exposed to pathogens, and employ an immune system to resist or limit infection. Although much attention has been paid to how adult mosquitoes fight infection, little is known about how an infection during the larval stage affects the biology of the resultant adult. In this study, we investigated whether a bacterial infection in the hemocoel of the African malaria mosquito, Anopheles gambiae, is transstadially transmitted from larvae to adults (both females and males), and whether immune stimulation in the hemocoel as a larva alters development or biological traits of the adult. Specifically, larvae were injected in the hemocoel with either fluorescent microspheres or Escherichia coli, and the following traits were examined: transstadial transmission, larval development to adulthood, adult survival, and adult body size. Our results show that transstadial transmission of hemocoel contents occurs from larvae to pupae and from pupae to adults, but that bacterial prevalence and intensity varies with age. Injury, immune stimulation or infection decreases the proportion of larvae that undergo pupation and eclosion, infection decreases the longevity of adult females, and treatment has complex effects on the body size of the resultant adults. The present study adds larval hemocoelic infection to the known non-genetic factors that reduce overall fitness by negatively affecting development and adult biological traits that influence mosquito vector competence.


Assuntos
Anopheles/microbiologia , Larva/microbiologia , Envelhecimento , Animais , Feminino , Longevidade , Masculino
7.
BMC Biol ; 14: 78, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27643786

RESUMO

BACKGROUND: As both larvae and adults, mosquitoes encounter a barrage of immune insults, ranging from microbe-rich communities in larval habitats to ingested blood-borne pathogens in adult blood meals. Given that mosquito adults have evolved an efficient means of eliminating infections in their hemocoel (body cavity) via the coordinated action of their immune and circulatory systems, the goal of the present study was to determine whether such functional integration is also present in larvae. RESULTS: By fluorescently labeling hemocytes (immune cells), pericardial cells, and the heart, we discovered that fourth instar larvae, unlike adults, contain segmental hemocytes but lack the periostial hemocytes that surround the ostia (heart valves) in abdominal segments 2-7. Instead, larvae contain an abundance of sessile hemocytes at the tracheal tufts, which are respiratory structures that are unique to larvae, are located in the posterior-most abdominal segment, and surround what in larvae are the sole incurrent openings for hemolymph entry into the heart. Injection of fluorescent immune elicitors and bacteria into the larval hemocoel then showed that tracheal tuft hemocytes mount rapid and robust immune responses against foreign insults. Indeed, green fluorescent protein-labeled Escherichia coli flowing with the hemolymph rapidly aggregate exclusively at the tracheal tufts, where they are killed within 24 h post-infection via both phagocytosis and melanization. CONCLUSION: Together, these findings show that the functional integration of the circulatory, respiratory, and immune systems of mosquitoes varies drastically across life stages.


Assuntos
Anopheles/citologia , Anopheles/imunologia , Circulação Sanguínea/fisiologia , Hemócitos/citologia , Sistema Imunitário/fisiologia , Traqueia/citologia , Animais , Anopheles/microbiologia , Morte Celular , Escherichia coli/fisiologia , Hemolinfa , Larva/microbiologia , Melaninas/metabolismo , Modelos Biológicos , Miocárdio/citologia , Fagocitose
8.
J Exp Biol ; 219(Pt 24): 3945-3951, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27742896

RESUMO

The wings of insects are composed of membranes supported by interconnected veins. Within these veins are epithelial cells, nerves and tracheae, and their maintenance requires the flow of hemolymph. For this purpose, insects employ accessory pulsatile organs (auxiliary hearts) that circulate hemolymph throughout the wings. Here, we used correlative approaches to determine the functional mechanics of hemolymph circulation in the wings of the malaria mosquito Anopheles gambiae Examination of sectioned tissues and intravital videos showed that the wing heart is located underneath the scutellum and is separate from the dorsal vessel. It is composed of a single pulsatile diaphragm (indicating that it is unpaired) that contracts at 3 Hz and circulates hemolymph throughout both wings. The wing heart contracts significantly faster than the dorsal vessel, and there is no correlation between the contractions of these two pulsatile organs. The wing heart functions by aspirating hemolymph out of the posterior wing veins, which forces hemolymph into the wings via anterior veins. By tracking the movement of fluorescent microspheres, we show that the flow diameter of the wing circulatory circuit is less than 1 µm, and we present a spatial map detailing the flow of hemolymph across all the wing veins, including the costa, sub-costa, ambient costa, radius, media, cubitus anterior, anal vein and crossveins. We also quantified the movement of hemolymph within the radius and within the ambient costa, and show that hemolymph velocity and maximum acceleration are higher when hemolymph is exiting the wing.


Assuntos
Anopheles/fisiologia , Circulação Sanguínea/fisiologia , Voo Animal/fisiologia , Coração/fisiologia , Hemolinfa/fisiologia , Asas de Animais/fisiologia , Animais , Anopheles/anatomia & histologia , Anopheles/ultraestrutura , Contração Miocárdica/fisiologia , Veias/fisiologia , Asas de Animais/anatomia & histologia , Asas de Animais/ultraestrutura
9.
J Exp Biol ; 219(Pt 15): 2388-95, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27247317

RESUMO

Insects rely on specialized accessory pulsatile organs (APOs), also known as auxiliary hearts, to propel hemolymph into their antennae. In most insects, this is accomplished via the pulsations of a pair of ampulla located in the head, each of which propels hemolymph across an antenna via an antennal vessel. Once at the distal end of the appendage, hemolymph returns to the head via the antennal hemocoel. Although the structure of the antennal hearts has been elucidated in various insect orders, their hormonal modulation has only been studied in cockroaches and other hemimetabolous insects within the superorder Polyneoptera, where proctolin and FMRFamide-like peptides accelerate the contraction rate of these auxiliary hearts. Here, we assessed the hormonal modulation of the antennal APOs of mosquitoes, a group of holometabolous (Endopterygota) insects within the order Diptera. We show that crustacean cardioactive peptide (CCAP), FMRFamide and SALDKNFMRFamide increase the contraction rate of the antennal APOs and the heart of Anopheles gambiae Both antennal hearts are synchronously responsive to these neuropeptides, but their contractions are asynchronous with the contraction of the heart. Furthermore, we show that these neuropeptides increase the velocity and maximum acceleration of hemolymph within the antennal space, suggesting that each contraction is also more forceful. To our knowledge, this is the first report demonstrating that hormones of a holometabolous insect modulate the contraction dynamics of an auxiliary heart, and the first report that shows that the hormones of any insect accelerate the velocity of hemolymph in the antennal space.


Assuntos
Anopheles/fisiologia , Antenas de Artrópodes/fisiologia , FMRFamida/farmacologia , Coração/fisiologia , Contração Miocárdica/fisiologia , Neuropeptídeos/farmacologia , Animais , Anopheles/efeitos dos fármacos , Antenas de Artrópodes/efeitos dos fármacos , Coração/efeitos dos fármacos , Hemolinfa/efeitos dos fármacos , Hemolinfa/metabolismo , Contração Miocárdica/efeitos dos fármacos , Reologia/efeitos dos fármacos
10.
J Exp Biol ; 218(Pt 3): 370-80, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25524976

RESUMO

Hemolymph circulation in insects is driven primarily by the contractile action of a dorsal vessel, which is divided into an abdominal heart and a thoracic aorta. As holometabolous insects, mosquitoes undergo striking morphological and physiological changes during metamorphosis. This study presents a comprehensive structural and functional analysis of the larval and adult dorsal vessel in the malaria mosquito Anopheles gambiae. Using intravital video imaging we show that, unlike the adult heart, the larval heart contracts exclusively in the anterograde direction and does not undergo heartbeat directional reversals. The larval heart contracts 24% slower than the adult heart, and hemolymph travels across the larval dorsal vessel at a velocity that is 68% slower than what is seen in adults. By fluorescently labeling muscle tissue we show that although the general structure of the heart and its ostia are similar across life stages, the heart-associated alary muscles are significantly less robust in larvae. Furthermore, unlike the adult ostia, which are the entry points for hemolymph into the heart, the larval ostia are almost entirely lacking in incurrent function. Instead, hemolymph enters the larval heart through incurrent openings located at the posterior terminus of the heart. These posterior openings are structurally similar across life stages, but in adults have an opposite, excurrent function. Finally, the larval aorta and heart differ significantly in the arrangement of their cardiomyocytes. In summary, this study provides an in-depth developmental comparison of the circulatory system of larval and adult mosquitoes.


Assuntos
Anopheles/anatomia & histologia , Anopheles/fisiologia , Animais , Feminino , Coração/anatomia & histologia , Coração/fisiologia , Hemolinfa/fisiologia , Larva/anatomia & histologia , Larva/fisiologia , Metamorfose Biológica , Contração Muscular , Gravação em Vídeo
11.
Arch Insect Biochem Physiol ; 88(1): 64-84, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25042057

RESUMO

Thermolysin, a metallopeptidase secreted by pathogenic microbes, is concluded as an important virulence factor due to cleaving purified host proteins in vitro. Using the silkworm Bombyx mori as a model system, we found that thermolysin injection into larvae induces the destruction of the coagulation response and the activation of hemolymph melanization, which results in larval death. Thermolysin triggers the rapid degradation of insect and mammalian plasma proteins at a level that is considerably greater than expected in vitro and/or in vivo. To more specifically explore the mechanism, thermolysin-induced changes to key proteins belonging to the insect melanization pathway were assessed as a window for observing plasma protein cleavage. The application of thermolysin induced the rapid cleavage of the melanization negative regulator serpin-3, but did not directly activate the melanization rate-limiting enzyme prophenoloxidase (PPO) or the terminal serine proteases responsible for PPO activation. Terminal serine proteases of melanization are activated indirectly after thermolysin exposure. We hypothesize that thermolysin induces the rapid degradation of serpins and the activation of proteases directly or indirectly, boosting uncontrolled plasma protein degradation in insects and mammalians.


Assuntos
Bombyx/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Termolisina/metabolismo , Animais , Proteínas Sanguíneas/metabolismo , Bombyx/imunologia , Catecol Oxidase , Drosophila melanogaster/metabolismo , Precursores Enzimáticos , Hemolinfa/metabolismo , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Larva/imunologia , Melaninas/biossíntese , Serina Endopeptidases , Serina Proteases , Serpinas/metabolismo , Fatores de Virulência/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-26099947

RESUMO

Serotonin and glutamate are neurotransmitters that in insects are involved in diverse physiological processes. Both serotonin and glutamate have been shown to modulate the physiology of the dorsal vessel of some insects, yet until the present study, their activity in mosquitoes remained unknown. To test whether serotonin or glutamate regulate dorsal vessel physiology in the African malaria mosquito, Anopheles gambiae, live mosquitoes were restrained, and a video of the contracting heart (the abdominal portion of the dorsal vessel) was acquired. These adult female mosquitoes were then injected with various amounts of serotonin, glutamate, or a control vehicle solution, and additional videos were acquired at 2 and 10 min post-treatment. Comparison of the videos taken before and after treatment revealed that serotonin accelerates the frequency of heart contractions, with the cardioacceleration being significantly more pronounced when the wave-like contractions of cardiac muscle propagate in the anterograde direction (toward the head). Comparison of the videos taken before and after treatment with glutamate revealed that this molecule is also cardioacceleratory. However, unlike serotonin, the activity of glutamate does not depend on whether the contractions propagate in the anterograde or the retrograde (toward the posterior of the abdomen) directions. Serotonin or glutamate induces a minor change or no change in the percentage of contractions and the percentage of the time that the heart contracts in the anterograde or the retrograde directions. In summary, this study shows that the neurotransmitters serotonin and glutamate increase the heart contraction rate of mosquitoes.


Assuntos
Anopheles/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Serotonina/farmacologia , Animais , Anopheles/fisiologia , Relação Dose-Resposta a Droga , Feminino , Frequência Cardíaca/fisiologia , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Agonistas do Receptor de Serotonina/farmacologia
13.
PLoS Pathog ; 8(11): e1003058, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209421

RESUMO

Insects counter infection with innate immune responses that rely on cells called hemocytes. Hemocytes exist in association with the insect's open circulatory system and this mode of existence has likely influenced the organization and control of anti-pathogen immune responses. Previous studies reported that pathogens in the mosquito body cavity (hemocoel) accumulate on the surface of the heart. Using novel cell staining, microdissection and intravital imaging techniques, we investigated the mechanism of pathogen accumulation in the pericardium of the malaria mosquito, Anopheles gambiae, and discovered a novel insect immune tissue, herein named periostial hemocytes, that sequesters pathogens as they flow with the hemolymph. Specifically, we show that there are two types of endocytic cells that flank the heart: periostial hemocytes and pericardial cells. Resident periostial hemocytes engage in the rapid phagocytosis of pathogens, and during the course of a bacterial or Plasmodium infection, circulating hemocytes migrate to the periostial regions where they bind the cardiac musculature and each other, and continue the phagocytosis of invaders. Periostial hemocyte aggregation occurs in a time- and infection dose-dependent manner, and once this immune process is triggered, the number of periostial hemocytes remains elevated for the lifetime of the mosquito. Finally, the soluble immune elicitors peptidoglycan and ß-1,3-glucan also induce periostial hemocyte aggregation, indicating that this is a generalized and basal immune response that is induced by diverse immune stimuli. These data describe a novel insect cellular immune response that fundamentally relies on the physiological interaction between the insect circulatory and immune systems.


Assuntos
Anopheles/imunologia , Endocitose/imunologia , Hemócitos/imunologia , Plasmodium/imunologia , Animais , Anopheles/citologia , Agregação Celular/efeitos dos fármacos , Agregação Celular/imunologia , Hemócitos/citologia , Peptidoglicano/imunologia , Peptidoglicano/farmacologia
14.
J Exp Biol ; 217(Pt 17): 3006-14, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24948635

RESUMO

Mosquito antennae provide sensory input that modulates host-seeking, mating and oviposition behaviors. Thus, mosquitoes must ensure the efficient transport of molecules into and out of these appendages. To accomplish this, mosquitoes and other insects have evolved antennal accessory pulsatile organs (APOs) that drive hemolymph into the antennal space. This study characterizes the structural mechanics of hemolymph propulsion throughout the antennae of Anopheles gambiae. Using intravital video imaging, we show that mosquitoes possess paired antennal APOs that are located on each side of the head's dorsal midline. They are situated between the frons and the vertex in an area that is dorsal to the antenna but ventral to the medial-most region of the compound eyes. Antennal APOs contract in synchrony at 1 Hz, which is 45% slower than the heart. By means of histology and intravital imaging, we show that each antennal APO propels hemolymph into the antenna through an antennal vessel that traverses the length of the appendage and has an effective diameter of 1-2 µm. When hemolymph reaches the end of the appendage, it is discharged into the antennal hemocoel and returns to the head. Because a narrow vessel empties into a larger cavity, hemolymph travels up the antenna at 0.2 mm s(-1) but reduces its velocity by 75% as it returns to the head. Finally, treatment of mosquitoes with the anesthetic agent FlyNap (triethylamine) increases both antennal APO and heart contraction rates. In summary, this study presents a comprehensive functional characterization of circulatory physiology in the mosquito antennae.


Assuntos
Anopheles/fisiologia , Antenas de Artrópodes/fisiologia , Animais , Anopheles/anatomia & histologia , Antenas de Artrópodes/anatomia & histologia , Circulação Sanguínea , Coração/fisiologia , Hemolinfa/fisiologia , Gravação em Vídeo
15.
Gen Comp Endocrinol ; 202: 15-25, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24747482

RESUMO

FMRFamide-like peptides (FLPs) are produced by invertebrate and vertebrate animals, and regulate diverse physiological processes. In insects, several FLPs modulate heart physiology, with some increasing and others decreasing dorsal vessel contraction dynamics. Here, we describe the FMRFamide gene structure in the mosquito, Anopheles gambiae, quantify the developmental and spatial expression of FMRFamide and its putative receptor (FMRFamideR), and show that the peptides FMRFamide and SALDKNFMRFamide have complex myotropic properties. RACE sequencing showed that the FMRFamide gene encodes eight putative FLPs and is alternatively spliced. Of the eight FLPs, only one is shared by A. gambiae, Aedes aegypti and Culex quinquefasciatus: SALDKNFMRFamide. Quantitative PCR showed that peak expression of FMRFamide and FMRFamideR occurs in second instar larvae and around eclosion. In adults, FMRFamide is primarily transcribed in the head and thorax, and FMRFamideR is primarily transcribed in the thorax. Intravital video imaging of mosquitoes injected FMRFamide and SALDKNFMRFamide revealed that at low doses these peptides increase heart contraction rates. At high doses, however, these peptides decrease heart contraction rates and alter the proportional directionality of heart contractions. Taken altogether, these data describe the FMRFamide gene in A. gambiae, and show that FLPs are complex modulators of mosquito circulatory physiology.


Assuntos
Anopheles/fisiologia , FMRFamida/química , FMRFamida/farmacologia , Coração/efeitos dos fármacos , Coração/fisiologia , Sequência de Aminoácidos , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Anopheles/crescimento & desenvolvimento , FMRFamida/genética , FMRFamida/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes de Insetos , Larva/efeitos dos fármacos , Larva/genética , Dados de Sequência Molecular , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/genética , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Fatores de Tempo
16.
BMC Biol ; 11: 55, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23631603

RESUMO

BACKGROUND: Mosquitoes respond to infection by mounting immune responses. The primary regulators of these immune responses are cells called hemocytes, which kill pathogens via phagocytosis and via the production of soluble antimicrobial factors. Mosquito hemocytes are circulated throughout the hemocoel (body cavity) by the swift flow of hemolymph (blood), and data show that some hemocytes also exist as sessile cells that are attached to tissues. The purpose of this study was to create a quantitative physical map of hemocyte distribution in the mosquito, Anopheles gambiae, and to describe the cellular immune response in an organismal context. RESULTS: Using correlative imaging methods we found that the number of hemocytes in a mosquito decreases with age, but that regardless of age, approximately 75% of the hemocytes occur in circulation and 25% occur as sessile cells. Infection induces an increase in the number of hemocytes, and tubulin and nuclear staining showed that this increase is primarily due to mitosis and, more specifically, autonomous cell division, by circulating granulocytes. The majority of sessile hemocytes are present on the abdominal wall, although significant numbers of hemocytes are also present in the thorax, head, and several of the appendages. Within the abdominal wall, the areas of highest hemocyte density are the periostial regions (regions surrounding the valves of the heart, or ostia), which are ideal locations for pathogen capture as these are areas of high hemolymph flow. CONCLUSIONS: These data describe the spatial and temporal distribution of mosquito hemocytes, and map the cellular response to infection throughout the hemocoel.


Assuntos
Anopheles/imunologia , Anopheles/microbiologia , Escherichia coli/fisiologia , Hemócitos/microbiologia , Hemócitos/patologia , Linfócitos/citologia , Mitose/imunologia , Análise Espaço-Temporal , Envelhecimento/imunologia , Animais , Anopheles/citologia , Anopheles/crescimento & desenvolvimento , Carbocianinas/metabolismo , Adesão Celular , Contagem de Células , Citoesqueleto/metabolismo , Células Epidérmicas , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Voo Animal , Hemócitos/imunologia , Imunidade , Músculos/citologia , Especificidade de Órgãos , Fagocitose , Natação
17.
Pest Manag Sci ; 80(2): 296-306, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37682561

RESUMO

BACKGROUND: Insecticides are critical for controlling mosquito populations and mitigating the spread of vector-borne disease, but their overuse has selected for resistant populations. A promising alternative to classical chemical insecticides is photosensitive molecules - here called photosensitive insecticides or PSIs - that when ingested and activated by light, generate broadly toxic reactive oxygen species. This mechanism of indiscriminate oxidative damage decreases the likelihood that target site modification-based resistance evolves. Here, we tested whether the PSIs, methylene blue (MB) and rose bengal (RB), are viable insecticides across the mosquito lineage. RESULTS: MB and RB are phototoxic to both Aedes aegypti and Anopheles gambiae at micromolar concentrations, with greatest toxicity when larvae are incubated in the dark with the PSIs for 2 h prior to photoactivation. MB is ten times more toxic than RB, and microscopy-based imaging suggests that this is because ingested MB escapes the larval gut and disperses throughout the hemocoel whereas RB remains confined to the gut. Adding food to the PSI-containing water has a bidirectional, concentration-dependent effect on PSI toxicity; toxicity increases at high concentrations but decreases at low concentrations. Finally, adding sand to the water increases the phototoxicity of RB to Ae. aegypti. CONCLUSION: MB and RB are larvicidal via a light activated mechanism, and therefore, should be further investigated as an option for mosquito control. © 2023 Society of Chemical Industry.


Assuntos
Aedes , Anopheles , Culex , Inseticidas , Animais , Inseticidas/farmacologia , Azul de Metileno/farmacologia , Rosa Bengala/farmacologia , Mosquitos Vetores , Extratos Vegetais/farmacologia , Larva , Água
18.
Dev Comp Immunol ; 159: 105219, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925431

RESUMO

An infection induces the migration of immune cells called hemocytes to the insect heart, where they aggregate around heart valves called ostia and phagocytose pathogens in areas of high hemolymph flow. Here, we investigated whether the cardiac extracellular matrix proteins, Pericardin (Prc) and Lonely heart (Loh), regulate the infection-induced aggregation of periostial hemocytes in the mosquito, An. gambiae. We discovered that RNAi-based post-transcriptional silencing of Prc or Loh did not affect the resident population of periostial hemocytes in uninfected mosquitoes, but that knocking down these genes decreases the infection-induced migration of hemocytes to the heart. Knocking down Prc or Loh did not affect the proportional distribution of periostial hemocytes along the periostial regions. Moreover, knocking down Prc or Loh did not affect the number of sessile hemocytes outside the periostial regions, suggesting that the role of these proteins is cardiac-specific. Finally, knocking down Prc or Loh did not affect the amount of melanin at the periostial regions, or the intensity of an infection at 24 h after challenge. Overall, we demonstrate that Prc and Loh are positive regulators of the infection-induced migration of hemocytes to the heart of mosquitoes.

19.
J Exp Biol ; 216(Pt 4): 601-13, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23364571

RESUMO

Crustacean cardioactive peptide (CCAP) is a highly conserved arthropod neurohormone that is involved in ecdysis, hormone release and the modulation of muscle contractions. Here, we determined the CCAP gene structure in the malaria mosquito Anopheles gambiae, assessed the developmental expression of CCAP and its receptor and determined the role that CCAP plays in regulating mosquito cardiac function. RACE sequencing revealed that the A. gambiae CCAP gene encodes a neuropeptide that shares 100% amino acid identity with all sequenced CCAP peptides, with the exception of Daphnia pulex. Quantitative RT-PCR showed that expression of CCAP and the CCAP receptor displays a bimodal distribution, with peak mRNA levels in second instar larvae and pupae. Injection of CCAP revealed that augmenting hemocoelic CCAP levels in adult mosquitoes increases the anterograde and retrograde heart contraction rates by up to 28%, and increases intracardiac hemolymph flow velocities by up to 33%. Partial CCAP knockdown by RNAi had the opposite effect, decreasing the mosquito heart rate by 6%. Quantitative RT-PCR experiments showed that CCAP mRNA is enriched in the head region, and immunohistochemical experiments in newly eclosed mosquitoes detected CCAP in abdominal neurons and projections, some of which innervated the heart, but failed to detect CCAP in the abdomens of older mosquitoes. Instead, in older mosquitoes CCAP was detected in the pars lateralis, the subesophageal ganglion and the corpora cardiaca. In conclusion, CCAP has a potent effect on mosquito circulatory physiology, and thus heart physiology in this dipteran insect is under partial neuronal control.


Assuntos
Anopheles/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/fisiologia , Neuropeptídeos/farmacologia , Neurotransmissores/farmacologia , Sequência de Aminoácidos , Animais , Anopheles/genética , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Frequência Cardíaca/efeitos dos fármacos , Hemolinfa/efeitos dos fármacos , Hemolinfa/metabolismo , Imuno-Histoquímica , Dados de Sequência Molecular , Contração Miocárdica/efeitos dos fármacos , Neuropeptídeos/administração & dosagem , Neuropeptídeos/química , Neuropeptídeos/genética , Peptídeos/farmacologia , Transcrição Gênica/efeitos dos fármacos
20.
Curr Biol ; 33(14): R762-R764, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37490861

RESUMO

Insects employ a tracheal system to transport oxygen and carbon dioxide to and from the body's cells. A new study discovers a micropore-based mechanism of respiration in the coiling mouthparts of moths and butterflies, which allowed these insects to evolve intricately long mouthparts without also evolving proportionally larger body sizes.


Assuntos
Borboletas , Mariposas , Animais , Insetos , Respiração , Tamanho Corporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA