RESUMO
Defects in circadian rhythm influence physiology and behavior with implications for the treatment of sleep disorders, metabolic disease, and cancer. Although core regulatory components of clock rhythmicity have been defined, insight into the mechanisms underpinning amplitude is limited. Here, we show that REV-ERBα, a core inhibitory component of clock transcription, is targeted for ubiquitination and subsequent degradation by the F-box protein FBXW7. By relieving REV-ERBα-dependent repression, FBXW7 provides an unrecognized mechanism for enhancing the amplitude of clock gene transcription. Cyclin-dependent kinase 1 (CDK1)-mediated phosphorylation of REV-ERBα is necessary for FBXW7 recognition. Moreover, targeted hepatic disruption of FBXW7 alters circadian expression of core clock genes and perturbs whole-body lipid and glucose levels. This CDK1-FBXW7 pathway controlling REV-ERBα repression defines an unexpected molecular mechanism for re-engaging the positive transcriptional arm of the clock, as well as a potential route to manipulate clock amplitude via small molecule CDK1 inhibition.
Assuntos
Ritmo Circadiano , Proteínas F-Box/metabolismo , Fígado/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Relógios Circadianos , Proteínas F-Box/genética , Proteína 7 com Repetições F-Box-WD , Técnicas de Inativação de Genes , Humanos , Metabolismo dos Lipídeos , Camundongos , Fosforilação , Processamento de Proteína Pós-Traducional , Transcriptoma , Ubiquitina-Proteína Ligases/genéticaRESUMO
The mammalian cryptochrome isoforms, CRY1 and CRY2, are core circadian clock regulators that work redundantly. Recent studies revealed distinct roles of these closely related homologs in clock output pathways. Isoform-selective control of CRY1 and CRY2 is critical for further understanding their redundant and distinct roles. KL001 was the first identified small-molecule CRY modulator that activates both CRY1 and CRY2. SHP656 is an orally available KL001 derivative and has shown efficacy in blood glucose control and inhibition of glioblastoma stem cell (GSC) growth in animal models. However, CRY isoform selectivity of SHP656 was uncharacterized, limiting understanding of the roles of CRY1 and CRY2. Here, we report the elucidation of CRY2 selectivity of SHP656. SHP656 lengthened cellular circadian period in a CRY2-dependent manner and selectively interacted with CRY2. By determining the X-ray crystal structure of CRY2 in complex with SHP656 and performing molecular dynamics simulations, we elucidated compound interaction mechanisms. SHP656 binding was compatible with the intrinsic CRY2 gatekeeper W417 "in" orientation and also a close "further in" conformation. Perturbation of W417 interaction with the lid loop resulted in a reduced effect of SHP656 on CRY2, supporting an important role of gatekeeper orientation in isoform selectivity. We also identified the R form of SHP656 (called SHP1703) as the active isomer. Treatment with SHP1703 effectively reduced GSC viability. Our results suggest a direct role of CRY2 in glioblastoma antitumorigenesis and provide a rationale for the selective modulation of CRY isoforms in the therapeutic treatment of glioblastoma and other circadian clock-related diseases.
Assuntos
Relógios Circadianos , Glioblastoma , Animais , Carbazóis , Ritmo Circadiano/fisiologia , Criptocromos/metabolismo , Glioblastoma/tratamento farmacológico , Mamíferos/metabolismo , Isoformas de Proteínas/genética , SulfonamidasRESUMO
Two decades of research identified more than a dozen clock genes and defined a biochemical feedback mechanism of circadian oscillator function. To identify additional clock genes and modifiers, we conducted a genome-wide small interfering RNA screen in a human cellular clock model. Knockdown of nearly 1000 genes reduced rhythm amplitude. Potent effects on period length or increased amplitude were less frequent; we found hundreds of these and confirmed them in secondary screens. Characterization of a subset of these genes demonstrated a dosage-dependent effect on oscillator function. Protein interaction network analysis showed that dozens of gene products directly or indirectly associate with known clock components. Pathway analysis revealed these genes are overrepresented for components of insulin and hedgehog signaling, the cell cycle, and the folate metabolism. Coupled with data showing many of these pathways are clock regulated, we conclude the clock is interconnected with many aspects of cellular function.
Assuntos
Relógios Biológicos , Ritmo Circadiano , Estudo de Associação Genômica Ampla , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Interferência de RNA , RNA Interferente Pequeno/metabolismoRESUMO
The circadian clock is a biological timekeeper that operates through transcription-translation feedback loops in mammals. Cryptochrome 1 (CRY1) and Cryptochrome 2 (CRY2) are highly conserved core clock components having redundant and distinct functions. We recently identified the CRY1- and CRY2-selective compounds KL101 and TH301, respectively, which provide useful tools for the exploration of isoform-selective CRY regulation. However, intrinsic differences in the compound-binding FAD (flavin adenine dinucleotide) pockets between CRY1 and CRY2 are not well understood, partly because of nonoptimal properties of previously reported apo form structures in this particular region constituted by almost identical sequences. Here, we show unliganded CRY1 and CRY2 crystal structures with well-defined electron densities that are largely free of crystal contacts at the FAD pocket and nearby lid loop. We revealed conformational isomerism in key residues. In particular, CRY1 W399 and corresponding CRY2 W417 in the FAD pocket had distinct conformations ("out" for CRY1 and "in" for CRY2) by interacting with the lid loop residues CRY1 Q407 and CRY2 F424, respectively, resulting in different overall lid loop structures. Molecular dynamics simulations supported that these conformations were energetically favorable to each isoform. Isoform-selective compounds KL101 and TH301 preferred intrinsic "out" and "in" conformations of the tryptophan residue in CRY1 and CRY2, respectively, while the nonselective compound KL001 fit to both conformations. Mutations of lid loop residues designed to perturb their isoform-specific interaction with the tryptophan resulted in reversed responses of CRY1 and CRY2 to KL101 and TH301. We propose that these intrinsic structural differences of CRY1 and CRY2 can be targeted for isoform-selective regulation.
Assuntos
Criptocromos/química , Criptocromos/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Mamíferos/metabolismo , Animais , Sítios de Ligação , Criptocromos/genética , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Mutação/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Secundária de ProteínaRESUMO
Positron emission tomography (PET) is a powerful imaging tool that enables early in vivo detection of Alzheimer's disease (AD). For this purpose, various PET ligands have been developed to image ß-amyloid and tau protein aggregates characteristically found in the brain of AD patients. In this study, we initiated to develop another type of PET ligand that targets protein kinase CK2 (formerly termed as casein kinase II), because its expression level is known to be altered in postmortem AD brains. CK2 is a serine/threonine protein kinase, an important component of cellular signaling pathways that control cellular degeneration. In AD, the CK2 level in the brain is thought to be elevated by its involvement in both phosphorylation of proteins such as tau and neuroinflammation. Decreased CK2 activity and expression levels lead to ß-amyloid accumulation. In addition, since CK2 also contributes to the phosphorylation of tau protein, the expression level and activity of CK2 is expected to undergo significant changes during the progression of AD pathology. Furthermore, CK2 could act as a potential target for modulating the inflammatory response in AD. Therefore, PET imaging targeting CK2 expressed in the brain could be a useful another imaging biomarker for AD. We synthesized and radiolabeled a CK2 inhibitor, [11C]GO289, in high yields from its precursor and [11C]methyl iodide under basic conditions. On autoradiography, [11C]GO289 specifically bound to CK2 in both rat and human brain sections. On baseline PET imaging, this ligand entered and rapidly washed out of the rat brain with its peak activity rather being small (SUV < 1.0). However, on blocking, there was no detectable CK2 specific binding signal. Thus, [11C]GO289 may be useful in vitro but not so in vivo in its current formulation. The lack of detectable specific binding signal in the latter may be due to a relatively high component of nonspecific binding signal in the overall rather weak PET signal, or it may also be related to the known fact that ATP can competitively binds to subunits of CK2, reducing its availability for this ligand. In the future, it will be necessary for PET imaging of CK2 to try out different non-ATP competitive formulations of CK2 inhibitor that can also provide significantly higher in vivo brain penetration.
Assuntos
Doença de Alzheimer , Caseína Quinase II , Humanos , Ratos , Animais , Ligantes , Tomografia por Emissão de Pósitrons/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismoRESUMO
The circadian clock is an internal timekeeping system that governs about 24 h biological rhythms of a broad range of developmental and metabolic activities. The clocks in eukaryotes are thought to rely on lineage-specific transcriptional-translational feedback loops. However, the mechanisms underlying the basic transcriptional regulation events for clock function have not yet been fully explored. Here, through a combination of chemical biology and genetic approaches, we demonstrate that phosphorylation of RNA polymerase II by CYCLIN DEPENDENT KINASE C; 2 (CDKC;2) is required for maintaining the circadian period in Arabidopsis. Chemical screening identified BML-259, the inhibitor of mammalian CDK2/CDK5, as a compound lengthening the circadian period of Arabidopsis. Short-term BML-259 treatment resulted in decreased expression of most clock-associated genes. Development of a chemical probe followed by affinity proteomics revealed that BML-259 binds to CDKC;2. Loss-of-function mutations of cdkc;2 caused a long period phenotype. In vitro experiments demonstrated that the CDKC;2 immunocomplex phosphorylates the C-terminal domain of RNA polymerase II, and BML-259 inhibits this phosphorylation. Collectively, this study suggests that transcriptional activity maintained by CDKC;2 is required for proper period length, which is an essential feature of the circadian clock in Arabidopsis.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Animais , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Mamíferos/metabolismo , Fosforilação , RNA Polimerase II/genética , RNA Polimerase II/metabolismoRESUMO
CRY1 and CRY2 are essential components of the circadian clock controlling daily physiological rhythms. Accumulating evidences indicate distinct roles of these highly homologous proteins, in addition to redundant functions. Therefore, the development of isoform-selective compounds represents an effective approach towards understanding the similarities and differences of CRY1 and CRY2 by controlling each isoform individually. We conducted phenotypic screenings of circadian clock modulators, and identified KL101 and TH301 that selectively stabilize CRY1 and CRY2, respectively. Crystal structures of CRY-compound complexes revealed conservation of compound-binding sites between CRY1 and CRY2. We further discovered a unique mechanism underlying compound selectivity in which the disordered C-terminal region outside the pocket was required for the differential effects of KL101 and TH301 against CRY isoforms. By using these compounds, we found a new role of CRY1 and CRY2 as enhancers of brown adipocyte differentiation, providing the basis of CRY-mediated regulation of energy expenditure.
Assuntos
Criptocromos/química , Isoformas de Proteínas/química , Animais , Sítios de Ligação , Relógios Circadianos , Criptocromos/genética , Fibroblastos/metabolismo , Células HEK293 , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos Knockout , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas/genética , TermodinâmicaRESUMO
The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the Arabidopsis CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the Arabidopsis circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of Arabidopsis CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A prr5 toc1 double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Caseína Quinase I/genética , Relógios Circadianos/genética , Fatores de Transcrição/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas/genética , Fosforilação/genética , Processamento de Proteína Pós-Traducional/genética , Transcrição Gênica/genéticaRESUMO
CRY1 and CRY2 proteins are highly conserved components of the circadian clock that controls daily physiological rhythms. Disruption of CRY functions are related to many diseases, including circadian sleep phase disorder. Development of isoform-selective and spatiotemporally controllable tools will facilitate the understanding of shared and distinct functions of CRY1 and CRY2. Here, we developed CRY1-selective compounds that enable light-dependent manipulation of the circadian clock. From phenotypic chemical screening in human cells, we identified benzophenone derivatives that lengthened the circadian period. These compounds selectively interacted with the CRY1 photolyase homology region, resulting in activation of CRY1 but not CRY2. The benzophenone moiety rearranged a CRY1 region called the "lid loop" located outside of the compound-binding pocket and formed a unique interaction with Phe409 in the lid loop. Manipulation of this key interaction was achieved by rationally designed replacement of the benzophenone with a switchable azobenzene moiety whose cis-trans isomerization can be controlled by light. The metastable cis form exhibited sufficiently high half-life in aqueous solutions and structurally mimicked the benzophenone unit, enabling reversible period regulation over days by cellular irradiation with visible light. This study revealed an unprecedented role of the lid loop in CRY-compound interaction and paves the way for spatiotemporal regulation of CRY1 activity by photopharmacology for molecular understanding of CRY1-dependent functions in health and disease.
Assuntos
Relógios Circadianos/efeitos dos fármacos , Criptocromos/efeitos dos fármacos , Animais , Relógios Circadianos/fisiologia , Humanos , LuzRESUMO
Photopharmacology develops bioactive compounds whose pharmacological potency can be regulated by light. The concept relies on the introduction of molecular photoswitches, such as azobenzenes, into the structure of bioactive compounds, such as known enzyme inhibitors. Until now, the development of photocontrolled protein kinase inhibitors proved to be challenging for photopharmacology. Here, we describe a new class of heterocyclic azobenzenes based on the longdaysin scaffold, which were designed to photo-modulate the activity of casein kinase Iα (CKIα) in the context of photo-regulation of circadian rhythms. Evaluation of a set of photoswitchable longdaysin derivatives allowed for better insight into the relationship between substituents and thermal stability of the cis-isomer. Furthermore, our studies on the chemical stability of the azo group in this type of heterocyclic azobenzenes showed that they undergo a fast reduction to the corresponding hydrazines in the presence of different reducing agents. Finally, we attempted light-dependent modulation of CKIα activity together with the accompanying modulation of cellular circadian rhythms in which CKIα is directly involved. Detailed structure-activity relationship (SAR) analysis revealed a new potent reduced azopurine with a circadian period lengthening effect more pronounced than that of its parent molecule, longdaysin. Altogether, the results presented here highlight the challenges in the development of light-controlled kinase inhibitors for the photomodulation of circadian rhythms and reveal key stability issues for using the emerging class of heteroaryl azobenzenes in biological applications.
Assuntos
Compostos Azo/farmacologia , Caseína Quinase Ialfa/antagonistas & inibidores , Ritmo Circadiano/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Compostos Azo/química , Compostos Azo/efeitos da radiação , Linhagem Celular Tumoral , Humanos , Isomerismo , Luz , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/efeitos da radiação , Purinas/química , Purinas/efeitos da radiação , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/efeitos da radiação , Relação Estrutura-AtividadeRESUMO
Either expression level or transcriptional activity of various nuclear receptors (NRs) have been demonstrated to be under circadian control. With a few exceptions, little is known about the roles of NRs as direct regulators of the circadian circuitry. Here we show that the nuclear receptor HNF4A strongly transrepresses the transcriptional activity of the CLOCK:BMAL1 heterodimer. We define a central role for HNF4A in maintaining cell-autonomous circadian oscillations in a tissue-specific manner in liver and colon cells. Not only transcript level but also genome-wide chromosome binding of HNF4A is rhythmically regulated in the mouse liver. ChIP-seq analyses revealed cooccupancy of HNF4A and CLOCK:BMAL1 at a wide array of metabolic genes involved in lipid, glucose, and amino acid homeostasis. Taken together, we establish that HNF4A defines a feedback loop in tissue-specific mammalian oscillators and demonstrate its recruitment in the circadian regulation of metabolic pathways.
Assuntos
Proteínas CLOCK/metabolismo , Ritmo Circadiano , Fator 4 Nuclear de Hepatócito/metabolismo , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/química , Proteínas CLOCK/genética , Linhagem Celular , Colo/metabolismo , Dimerização , Regulação para Baixo , Regulação da Expressão Gênica , Fator 4 Nuclear de Hepatócito/genética , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Transcrição GênicaRESUMO
Viable clones of C2C12 myoblasts where both catalytic subunits of protein kinase CK2 had been knocked out by the CRISPR/Cas9 methodology have recently been generated, thus challenging the concept that CK2 is essential for cell viability. Here we present evidence that these cells are still endowed with a residual "CK2-like" activity that is able to phosphorylate Ser-13 of endogenous CDC37. Searching for a molecular entity accounting for such an activity we have identified a band running slightly ahead of CK2α' on SDS-PAGE. This band is not detectable by in-gel casein kinase assay but it co-immuno-precipitates with the ß-subunit being downregulated by specific CK2α' targeting siRNA treatment. Its size and biochemical properties are consistent with those of CK2α' mutants deleted upstream of Glu-15 generated during the knockout process. This mutant sheds light on the role of the CK2 N-terminal segment as a regulator of activity and stability. Comparable cytotoxic efficacy of two selective and structurally unrelated CK2 inhibitors support the view that survival of CK2α/α'-/- cells relies on this deleted form of CK2α', whose discovery provides novel perspectives about the biological role of CK2.
Assuntos
Caseína Quinase II/química , Caseína Quinase II/metabolismo , Domínio Catalítico , Deleção de Sequência , Sequência de Aminoácidos , Animais , Caseína Quinase II/deficiência , Linhagem Celular , Sobrevivência Celular , Camundongos Knockout , Peptídeos/metabolismo , Fosforilação , Fosfosserina/metabolismo , Estabilidade Proteica , Especificidade por SubstratoRESUMO
E2 conjugating enzymes are the key catalytic actors in the transfer of ubiquitin, SUMO, and other ubiquitin-like modifiers to their substrate proteins. Their high rates of transfer and promiscuous binding complicate studies of their interactions and binding partners. To access specific, covalently linked conjugates of the SUMO E2 conjugating enzyme Ubc9, we prepared synthetic variants bearing site-specific non-native modifications including the following: (1) replacement of Cys93 to 2,3-diaminopropionic acid to form the amide-linked stable E2-SUMO conjugate, which is known to have high affinity for E3 ligases; (2) a photoreactive group (diazirine) to trap E3 ligases upon UV irradiation; and (3) an N-terminal biotin for purification and detection. To construct these Ubc9 variants in a flexible, convergent manner, we combined the three leading methods: native chemical ligation (NCL), α-ketoacid-hydroxylamine (KAHA) ligation, and serine/threonine ligation (STL). Using the synthetic proteins, we demonstrated the selective formation of Ubc9-SUMO conjugates and the trapping of an E3 ligase (RanBP2) to form the stable, covalently linked SUMO1-Ubc9-RanBP2 ternary complex. The powerful combination of ligation methods-which minimizes challenges of functional group manipulations-will enable chemical probes based on E2 conjugating enzymes to trap E3 ligases and facilitate the synthesis of other protein classes.
Assuntos
Sumoilação , Enzimas de Conjugação de Ubiquitina/síntese química , Células HEK293 , Humanos , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismoRESUMO
Circadian clocks, biological timekeepers that are present in almost every cell of our body, are complex systems whose disruption is connected to various diseases. Controlling cellular clock function with high temporal resolution in an inducible manner would yield an innovative approach for the circadian rhythm regulation. In the present study, we present structure-guided incorporation of photoremovable protecting groups into a circadian clock modifier, longdaysin, which inhibits casein kinase I (CKI). Using photodeprotection by UV or visible light (400 nm) as the external stimulus, we have achieved quantitative and light-inducible control over the CKI activity accompanied by an accurate regulation of circadian period in cultured human cells and mouse tissues, as well as in living zebrafish. This research paves the way for the application of photodosing in achieving precise temporal control over the biological timing and opens the door for chronophotopharmacology to deeper understand the circadian clock system.
Assuntos
Adenina/análogos & derivados , Caseína Quinase I/antagonistas & inibidores , Relógios Circadianos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Raios Ultravioleta , Peixe-Zebra/metabolismo , Adenina/química , Adenina/farmacologia , Animais , Linhagem Celular , Relógios Circadianos/efeitos da radiação , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/efeitos da radiação , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Humanos , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/efeitos da radiação , Transdução de Sinal Luminoso , Camundongos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/química , Baço/efeitos dos fármacos , Baço/enzimologia , Baço/efeitos da radiação , Fatores de TempoRESUMO
Protein kinase, casein kinase II (CK2), is ubiquitously expressed and highly conserved protein kinase that shows constitutive activity. It phosphorylates a diverse set of proteins and plays crucial role in several cellular processes. The catalytic subunit of this enzyme (CK2α) shows remarkable flexibility as evidenced in numerous crystal structures determined till now. Here, using analysis of multiple crystal structures and long timescale molecular dynamics simulations, we explore the conformational flexibility of CK2α. The enzyme shows considerably higher flexibility in the solution as compared to that observed in crystal structure ensemble. Multiple conformations of hinge region, located near the active site, were observed during the dynamics. We further observed that among these multiple conformations, the most populated conformational state was inadequately represented in the crystal structure ensemble. The catalytic spine, was found to be less dismantled in this state as compared to the "open" hinge/αD state crystal structures. The comparison of dynamics in unbound (Apo) state and inhibitor (CX4945) bound state exhibits inhibitor induced suppression in the overall dynamics of the enzyme. This is especially true for functionally important glycine-rich loop above the active site. Together, this work gives novel insights into the dynamics of CK2α in solution and relates it to the function. This work also explains the effect of inhibitor on the dynamics of CK2α and paves way for development of better inhibitors.
Assuntos
Domínio Catalítico , Simulação de Dinâmica Molecular , Conformação Proteica , Aminoácidos/química , Aminoácidos/metabolismo , Sítios de Ligação , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Cristalografia por Raios X , Humanos , Naftiridinas/química , Naftiridinas/metabolismo , Naftiridinas/farmacologia , Fenazinas , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Posttranslational regulation of clock proteins is an essential part of mammalian circadian rhythms, conferring sensitivity to metabolic state and offering promising targets for pharmacological control. Two such regulators, casein kinase 1 (CKI) and F-box and leucine-rich repeat protein 3 (FBXL3), modulate the stability of closely linked core clock proteins period (PER) and cryptochrome (CRY), respectively. Inhibition of either CKI or FBXL3 leads to longer periods, and their effects are independent despite targeting proteins with similar roles in clock function. A mechanistic understanding of this independence, however, has remained elusive. Our analysis of cellular circadian clock gene reporters further differentiated between the actions of CKI and FBXL3 by revealing opposite amplitude responses from each manipulation. To understand the functional relationship between the CKI-PER and FBXL3-CRY pathways, we generated robust mechanistic predictions by applying a bootstrap uncertainty analysis to multiple mathematical circadian models. Our results indicate that CKI primarily regulates the accumulating phase of the PER-CRY repressive complex by controlling the nuclear import rate, whereas FBXL3 separately regulates the duration of transcriptional repression in the nucleus. Dynamic simulations confirmed that this spatiotemporal separation is able to reproduce the independence of the two regulators in period regulation, as well as their opposite amplitude effect. As a result, this study provides further insight into the molecular clock machinery responsible for maintaining robust circadian rhythms.
Assuntos
Relógios Circadianos , Criptocromos/metabolismo , Mamíferos/metabolismo , Proteínas Circadianas Period/metabolismo , Processamento de Proteína Pós-Traducional , Análise Espaço-Temporal , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Carbazóis/farmacologia , Relógios Circadianos/efeitos dos fármacos , Proteínas F-Box/metabolismo , Genes Reporter , Células HEK293 , Humanos , Modelos Biológicos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Fatores de TempoRESUMO
The synthesis and functional analysis of KL001 derivatives, which are modulators of the mammalian circadian clock, are described. By using cutting-edge C-H activation chemistry, a focused library of KL001 derivatives was rapidly constructed, which enabled the identification of the critical sites on KL001 derivatives that induce a rhythm-changing activity along with the components that trigger opposite modes of action. The first period-shortening molecules that target the cryptochrome (CRY) were thus discovered. Detailed studies on the effects of these compounds on CRY stability implicate the existence of an as yet undiscovered regulatory mechanism.
Assuntos
Carbazóis/química , Ritmo Circadiano , Criptocromos/química , Sulfonamidas/química , Fatores de Transcrição ARNTL/genética , Sítios de Ligação , Carbazóis/síntese química , Carbazóis/farmacologia , Carbono/química , Linhagem Celular , Ritmo Circadiano/efeitos dos fármacos , Criptocromos/metabolismo , Genes Reporter , Células HEK293 , Humanos , Hidrogênio/química , Medições Luminescentes , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacologiaRESUMO
The circadian clock co-ordinates physiology and behavior with the day/night cycle. It consists of a transcriptional-translational feedback loop that generates self-sustained oscillations in transcriptional activity with a roughly 24h period via E-box enhancer elements. Numerous in vivo aspects of core clock feedback loop function are still incompletely understood, including its maturation during development, tissue-specific activity and perturbation in disease states. Zebrafish are promising models for biomedical research due to their high regenerative capacity and suitability for in vivo drug screens, and transgenic zebrafish lines are valuable tools to study transcriptional activity in vivo during development. To monitor the activity of the core clock feedback loop in vivo, we created a transgenic zebrafish line expressing a luciferase reporter gene under the regulation of a minimal promoter and four E-boxes. This Tg(4xE-box:Luc) line shows robust oscillating reporter gene expression both under light-dark cycles and upon release into constant darkness. Luciferase activity starts to oscillate during the first days of development, indicating that the core clock loop is already functional at an early stage. To test whether the Tg(4xE-box:Luc) line could be used in drug screens aimed at identifying compounds that target the circadian clock in vivo, we examined drug effects on circadian period. We were readily able to detect period changes as low as 0.7h upon treatment with the period-lengthening drugs lithium chloride and longdaysin in an assay set-up suitable for large-scale screens. Reporter gene mRNA expression is also detected in the adult brain and reveals differential clock activity across the brain, overlapping with endogenous clock gene expression. Notably, core clock activity is strongly correlated with brain regions where neurogenesis takes place and can be detected in several types of neural progenitors. Our results demonstrate that the Tg(4xE-box:Luc) line is an excellent tool for studying the regulation of the circadian clock and its maturation in vivo and in real time. Furthermore, it is highly suitable for in vivo screens targeting the core clock mechanism that take into account the complexity of an intact organism. Finally, it allows mapping of clock activity in the brain of a vertebrate model organism with prominent adult neurogenesis and high regeneration capacity.
Assuntos
Relógios Circadianos/fisiologia , Elementos E-Box/fisiologia , Neurogênese , Peixe-Zebra/fisiologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Animais Geneticamente Modificados , Encéfalo/fisiologia , Relógios Circadianos/efeitos dos fármacos , Genes Reporter , Cloreto de Lítio/farmacologia , Luciferases/genética , Luminescência , Regeneração , Peixe-Zebra/embriologiaRESUMO
The circadian clock is phase-delayed or -advanced by light when given at early or late subjective night, respectively. Despite the importance of the time-of-day-dependent phase responses to light, the underlying molecular mechanism is poorly understood. Here, we performed a comprehensive analysis of light-inducible genes in the chicken pineal gland, which consists of light-sensitive clock cells representing a prototype of the clock system. Light stimulated expression of 62 genes and 40 ESTs by >2.5-fold, among which genes responsive to the heat shock and endoplasmic reticulum stress as well as their regulatory transcription factors heat shock factor (HSF)1, HSF2, and X-box-binding protein 1 (XBP1) were strongly activated when a light pulse was given at late subjective night. In contrast, the light pulse at early subjective night caused prominent induction of E4bp4, a key regulator in the phase-delaying mechanism of the pineal clock, along with activation of a large group of cholesterol biosynthetic genes that are targets of sterol regulatory element-binding protein (SREBP) transcription factor. We found that the light pulse stimulated proteolytic formation of active SREBP-1 that, in turn, transactivated E4bp4 expression, linking SREBP with the light-input pathway of the pineal clock. As an output of light activation of cholesterol biosynthetic genes, we found light-stimulated pineal production of a neurosteroid, 7α-hydroxypregnenolone, demonstrating a unique endocrine function of the pineal gland. Intracerebroventricular injection of 7α-hydroxypregnenolone activated locomotor activities of chicks. Our study on the genome-wide gene expression analysis revealed time-of-day-dependent light activation of signaling pathways and provided molecular connection between gene expression and behavior through neurosteroid release from the pineal gland.
Assuntos
Ritmo Circadiano/fisiologia , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Choque Térmico/metabolismo , Luz , Transdução de Sinais/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/metabolismo , 17-alfa-Hidroxipregnenolona/análogos & derivados , 17-alfa-Hidroxipregnenolona/farmacologia , Animais , Sequência de Bases , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Comportamento Animal/efeitos da radiação , Galinhas , Colesterol/biossíntese , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/efeitos da radiação , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Estudo de Associação Genômica Ampla , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Locomoção/efeitos da radiação , Masculino , Dados de Sequência Molecular , Fatores de Transcrição de Fator Regulador X , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiaçãoRESUMO
Background: It has been reported that circadian clock components, Brain and Muscle ARNT-Like 1 (BMAL1) and Circadian Locomotor Output Cycles Kaput (CLOCK), are uniquely essential for glioblastoma (GBM) stem cell (GSC) biology and survival. Consequently, we developed a novel Cryptochrome (CRY) activator SHP1705, which inhibits BMAL1-CLOCK transcriptional activity. Methods: We analyzed buffy coats isolated from Phase 1 clinical trial subjects' blood to assess any changes to circadian, housekeeping, and blood transcriptome-based biomarkers following SHP1705 treatment. We utilized GlioVis to determine which circadian genes are differentially expressed in non-tumor versus GBM tissues. We employed in vitro and in vivo methods to test the efficacy of SHP1705 against patient-derived GSCs and xenografts in comparison to earlier CRY activator scaffolds. Additionally, we applied a novel-REV-ERB agonist SR29065, which inhibits BMAL1 transcription, to determine whether targeting both negative limbs of the circadian transcription-translation feedback loop (TTFL) would yield synergistic effects against various GBM cells. Results: SHP1705 is safe and well-tolerated in Phase I clinical trials. SHP1705 has increased selectivity for the CRY2 isoform and potency against GSC viability compared to previously published CRY activators. SHP1705 prolonged survival in mice bearing GBM tumors established with GSCs. When combined with the novel REV-ERB agonist SR29065, SHP1705 displayed synergy against multiple GSC lines and differentiated GSCs (DGCs). Conclusions: These demonstrate the efficacy of SHP1705 against GSCs, which pose for GBM patient outcomes. They highlight the potential of novel circadian clock compounds in targeting GBM as single agents or in combination with each other or current standard-of-care. KEY POINTS: SHP1705 is a novel CRY2 activator that has shown success in Phase 1 safety trialsSHP1705 has a significantly improved efficacy against GSCs and GBM PDX tumorsNovel REV-ERB agonist SR29065 and SHP1705 display synergistic effects against GSCs. IMPORTANCE OF THE STUDY: CRY2 is decreased in GBM tissues compared to CRY1 suggesting that promoting CRY2 activity will be an efficacious GBM treatment paradigm. SHP1705, a CRY2 activator that has shown success in Phase 1 safety trials, has significantly improved preclinical efficacy. Novel REV-ERB agonist SR29065 displays synergistic effects against diverse GBM cells.