Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Med Genet ; 60(1): 48-56, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740919

RESUMO

BACKGROUND: Fetal akinesia (FA) results in variable clinical presentations and has been associated with more than 166 different disease loci. However, the underlying molecular cause remains unclear in many individuals. We aimed to further define the set of genes involved. METHODS: We performed in-depth clinical characterisation and exome sequencing on a cohort of 23 FA index cases sharing arthrogryposis as a common feature. RESULTS: We identified likely pathogenic or pathogenic variants in 12 different established disease genes explaining the disease phenotype in 13 index cases and report 12 novel variants. In the unsolved families, a search for recessive-type variants affecting the same gene was performed; and in five affected fetuses of two unrelated families, a homozygous loss-of-function variant in the kinesin family member 21A gene (KIF21A) was found. CONCLUSION: Our study underlines the broad locus heterogeneity of FA with well-established and atypical genotype-phenotype associations. We describe KIF21A as a new factor implicated in the pathogenesis of severe neurogenic FA sequence with arthrogryposis of multiple joints, pulmonary hypoplasia and facial dysmorphisms. This hypothesis is further corroborated by a recent report on overlapping phenotypes observed in Kif21a null piglets.


Assuntos
Artrogripose , Humanos , Animais , Suínos , Mutação/genética , Artrogripose/genética , Artrogripose/patologia , Perda de Heterozigosidade , Feto , Fenótipo , Linhagem , Cinesinas/genética
2.
Cancer Sci ; 102(2): 351-60, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21156006

RESUMO

Telomerase plays an important role during immortalization and malignant transformation as crucial steps in the development of human cancer. In a cellular model of oral-esophageal carcinogenesis, recapitulating the human disease, immortalization occurred independent of the activation of telomerase but through the recombination-based alternative lengthening of telomeres (ALT). In this stepwise model, additional overexpression of EGFR led to in vitro transformation and activation of telomerase with homogeneous telomere elongation in already immortalized oral squamous epithelial cells (OKF6-D1_dnp53). More interestingly, EGFR overexpression activated the PI3K/AKT pathway. This strongly suggested a role for telomerase in tumor progression in addition to just elongating telomeres and inferring an immortalized state. Therefore, we sought to identify the regulatory mechanisms involved in this activation of telomerase and in vitro transformation induced by EGFR. In the present study we demonstrate that telomerase expression and activity are induced through both direct phosphorylation of hTERT by phospho-AKT as well as PI3K-dependent transcriptional regulation involving Hif1-alpha as a key transcription factor. Furthermore, EGFR overexpression enhanced cell cycle progression and proliferation via phosphorylation and translocation of p21. Whereas immortalization was induced by ALT, in vitro transformation was associated with telomerase activation, supporting an additional role for telomerase in tumor progression besides elongating telomeres.


Assuntos
Transformação Celular Neoplásica/metabolismo , Receptores ErbB/biossíntese , Neoplasias Esofágicas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Bucais/metabolismo , Telomerase/metabolismo , Western Blotting , Transformação Celular Neoplásica/genética , Células Cultivadas , Ativação Enzimática/fisiologia , Receptores ErbB/genética , Neoplasias Esofágicas/genética , Imunofluorescência , Expressão Gênica , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Imunoprecipitação , Hibridização in Situ Fluorescente , Neoplasias Bucais/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA