Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Biol Chem ; 298(6): 101958, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35452679

RESUMO

Due to their high energy demands and characteristic morphology, retinal photoreceptor cells require a specialized lipid metabolism for survival and function. Accordingly, dysregulation of lipid metabolism leads to the photoreceptor cell death and retinal degeneration. Mice bearing a frameshift mutation in the gene encoding lysophosphatidylcholine acyltransferase 1 (Lpcat1), which produces saturated phosphatidylcholine (PC) composed of two saturated fatty acids, has been reported to cause spontaneous retinal degeneration in mice; however, the mechanism by which this mutation affects degeneration is unclear. In this study, we performed a detailed characterization of LPCAT1 in the retina and found that genetic deletion of Lpcat1 induces light-independent and photoreceptor-specific apoptosis in mice. Lipidomic analyses of the retina and isolated photoreceptor outer segment (OS) suggested that loss of Lpcat1 not only decreased saturated PC production but also affected membrane lipid composition, presumably by altering saturated fatty acyl-CoA availability. Furthermore, we demonstrated that Lpcat1 deletion led to increased mitochondrial reactive oxygen species levels in photoreceptor cells, but not in other retinal cells, and did not affect the OS structure or trafficking of OS-localized proteins. These results suggest that the LPCAT1-dependent production of saturated PC plays critical roles in photoreceptor maturation. Our findings highlight the therapeutic potential of saturated fatty acid metabolism in photoreceptor cell degeneration-related retinal diseases.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Células Fotorreceptoras de Vertebrados/citologia , Espécies Reativas de Oxigênio/metabolismo , Degeneração Retiniana , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Animais , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Camundongos , Fosfatidilcolinas/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Degeneração Retiniana/metabolismo
2.
Hepatology ; 76(1): 112-125, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34855990

RESUMO

BACKGROUND AND AIMS: Chronic liver congestion reflecting right-sided heart failure (RHF), Budd-Chiari syndrome, or Fontan-associated liver disease (FALD) is involved in liver fibrosis and HCC. However, molecular mechanisms of fibrosis and HCC in chronic liver congestion remain poorly understood. APPROACH AND RESULTS: Here, we first demonstrated that chronic liver congestion promoted HCC and metastatic liver tumor growth using murine model of chronic liver congestion by partial inferior vena cava ligation (pIVCL). As the initial step triggering HCC promotion and fibrosis, gut-derived lipopolysaccharide (LPS) appeared to induce LSECs capillarization in mice and in vitro. LSEC capillarization was also confirmed in patients with FALD. Mitogenic factor, sphingosine-1-phosphate (S1P), was increased in congestive liver and expression of sphingosine kinase 1, a major synthetase of S1P, was increased in capillarized LSECs after pIVCL. Inhibition of S1P receptor (S1PR) 1 (Ex26) and S1PR2 (JTE013) mitigated HCC development and liver fibrosis, respectively. Antimicrobial treatment lowered portal blood LPS concentration, LSEC capillarization, and liver S1P concentration accompanied by reduction of HCC development and fibrosis in the congestive liver. CONCLUSIONS: In conclusion, chronic liver congestion promotes HCC development and liver fibrosis by S1P production from LPS-induced capillarized LSECs. Careful treatment of both RHF and liver cancer might be necessary for patients with RHF with primary or metastatic liver cancer.


Assuntos
Carcinoma Hepatocelular , Insuficiência Cardíaca , Neoplasias Hepáticas , Doenças Vasculares , Animais , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Fibrose , Humanos , Lipopolissacarídeos , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Lisofosfolipídeos/metabolismo , Camundongos , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
3.
FASEB J ; 35(6): e21501, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33956375

RESUMO

Platelet-activating factor (PAF) is a potent proinflammatory phospholipid mediator that elicits various cellular functions and promotes several pathological events, including anaphylaxis and neuropathic pain. PAF is biosynthesized by two types of lyso-PAF acetyltransferases: lysophosphatidylcholine acyltransferase 1 (LPCAT1) and LPCAT2, which are constitutive and inducible forms of lyso-PAF acetyltransferase, respectively. Because LPCAT2 mainly produces PAF under inflammatory stimuli, understanding the structure of LPCAT2 is important for developing specific drugs against PAF-related inflammatory diseases. Although the structure of LPCAT2 has not been determined, the crystal structure was reported for Thermotoga maritima PlsC, an enzyme in the same gene family as LPCAT2. Here, we identified residues in mouse LPCAT2 essential for its enzymatic activity and a potential acyl-coenzyme A (CoA)-binding pocket, based on homology modeling of mouse LPCAT2 with PlsC. We also found that Ala115 of mouse LPCAT2 was important for acyl-CoA selectivity. In conclusion, these results predict the three-dimensional (3D) structure of mouse LPCAT2. Our findings have implications for the future development of new drugs against PAF-related diseases.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/química , Acil Coenzima A/metabolismo , Modelos Moleculares , Mutação , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Sequência de Aminoácidos , Animais , Domínio Catalítico , Camundongos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Homologia de Sequência
4.
J Lipid Res ; 59(2): 184-194, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29284664

RESUMO

Adaption of skeletal muscle to endurance exercise includes PPARδ- and AMP-activated protein kinase (AMPK)/PPARγ coactivator 1α-mediated transcriptional responses that result in increased oxidative capacity and conversion of glycolytic to more oxidative fiber types. These changes are associated with whole-body metabolic alterations including improved glucose handling and resistance to obesity. Increased DHA (22:6n-3) content in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is also reported in endurance exercise-trained glycolytic muscle; however, the DHA-metabolizing enzymes involved and the biological significance of the enhanced DHA content are unknown. In the present study, we identified lysophosphatidic acid acyltransferase (LPAAT)3 as an enzyme that was upregulated in myoblasts during in vitro differentiation and selectively incorporated DHA into PC and PE. LPAAT3 expression was increased by pharmacological activators of PPARδ or AMPK, and combination treatment led to further increased LPAAT3 expression and enhanced incorporation of DHA into PC and PE. Our results indicate that LPAAT3 was upregulated by exercise-induced signaling pathways and suggest that LPAAT3 may also contribute to the enhanced phospholipid-DHA content of endurance-trained muscles. Identification of DHA-metabolizing enzymes in the skeletal muscle will help to elucidate broad metabolic effects of DHA.


Assuntos
Aciltransferases/metabolismo , Membrana Celular/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Músculo Esquelético/efeitos dos fármacos , PPAR delta/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Camundongos , Músculo Esquelético/metabolismo , Regulação para Cima/efeitos dos fármacos
5.
J Biol Chem ; 292(29): 12065-12076, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28578315

RESUMO

Docosahexaenoic acid (DHA) is one of the essential ω-3 polyunsaturated fatty acids with a wide range of physiological roles important for human health. For example, DHA renders cell membranes more flexible and is therefore important for cellular function, but information on the mechanisms that control DHA levels in membranes is limited. Specifically, it is unclear which factors determine DHA incorporation into cell membranes and how DHA exerts biological effects. We found that lysophosphatidic acid acyltransferase 3 (LPAAT3) is required for producing DHA-containing phospholipids in various tissues, such as the testes and retina. In this study, we report that LPAAT3-KO mice display severe male infertility with abnormal sperm morphology. During germ cell differentiation, the expression of LPAAT3 was induced, and germ cells obtained more DHA-containing phospholipids. Loss of LPAAT3 caused drastic reduction of DHA-containing phospholipids in spermatids that led to excess cytoplasm around its head, which is normally removed by surrounding Sertoli cells via endocytosis at the final stage of spermatogenesis. In vitro liposome filtration assay raised the possibility that DHA in phospholipids promotes membrane deformation that is required for the rapid endocytosis. These data suggest that decreased membrane flexibility in LPAAT3-KO sperm impaired the efficient removal of sperm content through endocytosis. We conclude that LPAAT3-mediated enrichment of cell membranes with DHA-containing phospholipids endows these membranes with physicochemical properties needed for normal cellular processes, as exemplified by spermatogenesis.


Assuntos
Aciltransferases/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Infertilidade Masculina/enzimologia , Espermatogênese , Espermatozoides/metabolismo , Testículo/metabolismo , Aciltransferases/genética , Animais , Ácidos Docosa-Hexaenoicos/análise , Ácidos Docosa-Hexaenoicos/química , Endocitose , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Lipossomos , Masculino , Fluidez de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Cabeça do Espermatozoide/metabolismo , Cabeça do Espermatozoide/patologia , Cabeça do Espermatozoide/ultraestrutura , Espermátides/metabolismo , Espermátides/patologia , Espermátides/ultraestrutura , Espermatozoides/patologia , Espermatozoides/ultraestrutura , Testículo/patologia , Testículo/ultraestrutura
6.
J Biol Chem ; 292(29): 12054-12064, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28578316

RESUMO

Docosahexaenoic acid (DHA) has essential roles in photoreceptor cells in the retina and is therefore crucial to healthy vision. Although the influence of dietary DHA on visual acuity is well known and the retina has an abundance of DHA-containing phospholipids (PL-DHA), the mechanisms associated with DHA's effects on visual function are unknown. We previously identified lysophosphatidic acid acyltransferase 3 (LPAAT3) as a PL-DHA biosynthetic enzyme. Here, using comprehensive phospholipid analyses and imaging mass spectroscopy, we found that LPAAT3 is expressed in the inner segment of photoreceptor cells and that PL-DHA disappears from the outer segment in the LPAAT3-knock-out mice. Dynamic light-scattering analysis of liposomes and molecular dynamics simulations revealed that the physical characteristics of DHA reduced membrane-bending rigidity. Following loss of PL-DHA, LPAAT3-knock-out mice exhibited abnormalities in the retinal layers, such as incomplete elongation of the outer segment and decreased thickness of the outer nuclear layers and impaired visual function, as well as disordered disc morphology in photoreceptor cells. Our results indicate that PL-DHA contributes to visual function by maintaining the disc shape in photoreceptor cells and that this is a function of DHA in the retina. This study thus provides the reason why DHA is required for visual acuity and may help inform approaches for overcoming retinal disorders associated with DHA deficiency or dysfunction.


Assuntos
Aciltransferases/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Transtornos da Visão/metabolismo , Aciltransferases/genética , Animais , Biomarcadores/metabolismo , Cruzamentos Genéticos , Ácidos Docosa-Hexaenoicos/análise , Ácidos Docosa-Hexaenoicos/química , Eletrorretinografia , Lipossomos , Fluidez de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , Imagem Multimodal , Imagem Óptica , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Células Fotorreceptoras de Vertebrados/ultraestrutura , Fenômenos Físicos , Retina/metabolismo , Retina/patologia , Retina/ultraestrutura , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/patologia , Segmento Externo das Células Fotorreceptoras da Retina/ultraestrutura , Transtornos da Visão/patologia
7.
J Lipid Res ; 55(5): 799-807, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24646950

RESUMO

Cellular membranes are composed of numerous kinds of glycerophospholipids with different combinations of polar heads at the sn-3 position and acyl moieties at the sn-1 and sn-2 positions, respectively. The glycerophospholipid compositions of different cell types, organelles, and inner/outer plasma membrane leaflets are quite diverse. The acyl moieties of glycerophospholipids synthesized in the de novo pathway are subsequently remodeled by the action of phospholipases and lysophospholipid acyltransferases. This remodeling cycle contributes to the generation of membrane glycerophospholipid diversity and the production of lipid mediators such as fatty acid derivatives and lysophospholipids. Furthermore, specific glycerophospholipid transporters are also important to organize a unique glycerophospholipid composition in each organelle. Recent progress in this field contributes to understanding how and why membrane glycerophospholipid diversity is organized and maintained.


Assuntos
Membrana Celular/metabolismo , Glicerofosfolipídeos/química , Glicerofosfolipídeos/metabolismo , Mamíferos , Animais , Ácidos Graxos Insaturados/química , Glicerofosfolipídeos/biossíntese , Humanos , Mitocôndrias/metabolismo , Transdução de Sinais
8.
FASEB J ; 27(12): 5131-40, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24018064

RESUMO

Pulmonary surfactant, a complex composed primarily of lipids and associated proteins, is synthesized in alveolar type II (ATII) cells and secreted into alveoli to prevent collapse during respiration. Although numerous studies have clarified the fundamental roles of pulmonary surfactant, the molecular mechanisms of transport and secretion of pulmonary surfactant remain totally unknown. Thus, we screened candidate genes by comparing genes with the expressed sequence tag (EST) libraries of embryonic and adult lungs by using the digital differential display method in the National Center for Biotechnology Information (NCBI) database. We identified Sec14-like 3 (Sec14L3) as a new class of lipid-associated proteins highly expressed in ATII cells. We found that Sec14L3 expression is >100-fold increased during the perinatal period in the lung. Furthermore, Sec14L3 bound to small-sized liposomes (30 nm in diameter), but not to large-sized liposomes (100 nm diameter), through its Sec14 domain. Because of the increased curvature, lipid-packing defects are more likely to occur in small-sized liposomes than in large-sized liposomes. Based on these results, we conclude that Sec14L3 is a new class of lipid-packing sensor. Sec14L3 may play important roles in the lung, such as intracellular lipid transport, surfactant maturation, and endo/exocytosis.


Assuntos
Proteínas de Transporte/metabolismo , Fosfolipídeos/metabolismo , Alvéolos Pulmonares/metabolismo , Animais , Transporte Biológico , Proteínas de Transporte/química , Proteínas de Transporte/genética , Células Cultivadas , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Lipossomos/química , Lipossomos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/embriologia , Ratos , Ratos Sprague-Dawley , Transcrição Gênica
9.
Commun Biol ; 7(1): 96, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218950

RESUMO

Exposure of testes to high-temperature environment results in defective spermatogenesis. Zebrafish exposed to high temperature exhibited apoptosis not only in germ cells but also in Leydig cells, as expected from studies using mice or salmon. However, the role of testicular somatic cells in spermatogenesis defects remains unclear. We found that in Leydig cells the Trpv4 gene encoding the temperature sensitive ion channel was specifically upregulated in high temperature. High temperature also reduced hormone synthesis in Leydig cells and led to a prompt downregulation of sperm motility. In the Trpv4 null mutant, neither Leydig cell-specific apoptosis nor decreased sperm motility was observed under high temperature. These results indicate that Leydig cell specific-apoptosis is induced via Trpv4 by high temperature. Notably this Trpv4-dependent mechanism was specific to Leydig cells and did not operate in germ cells. Because sperm exposed to high temperature exhibited compromised genome stability, we propose that temperature sensing leading to apoptosis in Leydig cells evolved to actively suppress generation of offspring with unstable genome.


Assuntos
Células Intersticiais do Testículo , Peixe-Zebra , Animais , Masculino , Camundongos , Apoptose/fisiologia , Células Intersticiais do Testículo/fisiologia , Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Temperatura , Peixe-Zebra/genética
10.
Proc Natl Acad Sci U S A ; 105(8): 2830-5, 2008 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-18287005

RESUMO

All organisms consist of cells that are enclosed by a cell membrane containing bipolar lipids and proteins. Glycerophospholipids are important not only as structural and functional components of cellular membrane but also as precursors of various lipid mediators. Polyunsaturated fatty acids comprising arachidonic acid or eicosapentaenoic acid are located at sn-2 position, but not at sn-1 position of glycerophospholipids in an asymmetrical manner. In addition to the asymmetry, the membrane diversity is important for membrane fluidity and curvature. To explain the asymmetrical distribution of fatty acids, the rapid turnover of sn-2 position was proposed in 1958 by Lands [Lands WE (1958) Metabolism of glycerolipides: A comparison of lecithin and triglyceride synthesis. J Biol Chem 231:883-888]. However, the molecular mechanisms and biological significance of the asymmetry remained unknown. Here, we describe a putative enzyme superfamily consisting mainly of three gene families, which catalyzes the transfer of acyl-CoAs to lysophospholipids to produce different classes of phospholipids. Among them, we characterized three important enzymes with different substrate specificities and tissue distributions; one, termed lysophosphatidylcholine acyltransferase-3 (a mammalian homologue of Drosophila nessy critical for embryogenesis), prefers arachidonoyl-CoA, and the other two enzymes incorporate oleoyl-CoAs to lysophosphatidylethanolamine and lysophosphatidylserine. Thus, we propose that the membrane diversity is produced by the concerted and overlapped reactions with multiple enzymes that recognize both the polar head group of glycerophospholipids and various acyl-CoAs. Our findings constitute a critical milestone for our understanding about how membrane diversity and asymmetry are established and their biological significance.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Membrana Celular/enzimologia , Família Multigênica/genética , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Animais , Sequência de Bases , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Análise por Conglomerados , Coenzima A/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Filogenia , RNA Interferente Pequeno/genética , Análise de Sequência de DNA , Especificidade por Substrato
11.
J Immunol ; 181(7): 5008-14, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18802104

RESUMO

Platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) plays a critical role in inflammatory disorders including experimental allergic encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). Although PAF accumulation in the spinal cord (SC) of EAE mice and cerebrospinal fluid of MS patients has been reported, little is known about the metabolic processing of PAF in these diseases. In this study, we demonstrate that the activities of phospholipase A(2) (PLA(2)) and acetyl-CoA:lyso-PAF acetyltransferase (LysoPAFAT) are elevated in the SC of EAE mice on a C57BL/6 genetic background compared with those of naive mice and correlate with disease severity. Correspondingly, levels of groups IVA, IVB, and IVF cytosolic PLA(2)s, group V secretory PLA(2), and LysoPAFAT transcripts are up-regulated in the SC of EAE mice. PAF acetylhydrolase activity is unchanged during the disease course. In addition, we show that LysoPAFAT mRNA and protein are predominantly expressed in microglia. Considering the substrate specificity and involvement of PAF production, group IVA cytosolic PLA(2) is likely to be responsible for the increased PLA(2) activity. These data suggest that PAF accumulation in the SC of EAE mice is profoundly dependent on the group IVA cytosolic PLA(2)/LysoPAFAT axis present in the infiltrating macrophages and activated microglia.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/fisiologia , Encefalomielite Autoimune Experimental/metabolismo , Fosfolipases A2 do Grupo IV/fisiologia , Fator de Ativação de Plaquetas/biossíntese , Transdução de Sinais/imunologia , Medula Espinal/metabolismo , Medula Espinal/patologia , 1-Acilglicerofosfocolina O-Aciltransferase/biossíntese , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Sequência de Aminoácidos , Animais , Movimento Celular/imunologia , Citosol/enzimologia , Citosol/imunologia , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Glicoproteínas/toxicidade , Fosfolipases A2 do Grupo IV/biossíntese , Fosfolipases A2 do Grupo IV/genética , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/fisiologia , Macrófagos/enzimologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/enzimologia , Microglia/imunologia , Microglia/patologia , Dados de Sequência Molecular , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos/toxicidade , Fator de Ativação de Plaquetas/genética , Fator de Ativação de Plaquetas/metabolismo , Medula Espinal/enzimologia , Regulação para Cima/imunologia
12.
iScience ; 23(9): 101495, 2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32891885

RESUMO

Polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA) and arachidonic acid (ARA), play fundamental roles in mammalian physiology. Although PUFA imbalance causes various disorders, mechanisms of the regulation of their systemic levels are poorly understood. Here, we report that hepatic DHA-containing phospholipids (DHA-PLs) determine the systemic levels of PUFAs through the SREBP1-mediated transcriptional program. We demonstrated that liver-specific deletion of Agpat3 leads to a decrease of DHA-PLs and a compensatory increase of ARA-PLs not only in the liver but also in other tissues including the brain. Together with recent findings that plasma lysophosphatidylcholine (lysoPC) is the major source of brain DHA, our results indicate that hepatic AGPAT3 contributes to brain DHA accumulation by supplying DHA-PLs as precursors of DHA-lysoPC. Furthermore, dietary fish oil-mediated suppression of hepatic PUFA biosynthetic program was blunted in liver-specific Agpat3 deletion. Our findings highlight the central role of hepatic DHA-PLs as the molecular rheostat for systemic homeostasis of PUFAs.

13.
Cell Rep ; 28(1): 145-158.e9, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269436

RESUMO

Hematopoietic stem cells (HSCs) maintain lifelong hematopoiesis by remaining quiescent in the bone marrow niche. Recapitulation of a quiescent state in culture has not been achieved, as cells rapidly proliferate and differentiate in vitro. After exhaustive analysis of different environmental factor combinations and concentrations as a way to mimic physiological conditions, we were able to maintain engraftable quiescent HSCs for 1 month in culture under very low cytokine concentrations, hypoxia, and very high fatty acid levels. Exogenous fatty acids were required likely due to suppression of intrinsic fatty acid synthesis by hypoxia and low cytokine conditions. By contrast, high cytokine concentrations or normoxia induced HSC proliferation and differentiation. Our culture system provides a means to evaluate properties of steady-state HSCs and test effects of defined factors in vitro under near-physiological conditions.


Assuntos
Técnicas de Cultura de Células/métodos , Citocinas/farmacologia , Ácidos Graxos/farmacologia , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Animais , Apoptose , Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Hipóxia Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Colesterol/farmacologia , Ontologia Genética , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Insulina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Célula Única , Fator de Células-Tronco/farmacologia , Nicho de Células-Tronco/efeitos dos fármacos , Nicho de Células-Tronco/fisiologia
14.
FEBS Lett ; 591(18): 2730-2744, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28833063

RESUMO

Omega-3 (ω-3) fatty acids (FAs) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are known to have important roles in human health and disease. Besides being utilized as fuel, ω-3 FAs have specific functions based on their structural characteristics. These functions include serving as ligands for several receptors, precursors of lipid mediators, and components of membrane glycerophospholipids (GPLs). Since ω-3 FAs (especially DHA) are highly flexible, the levels of DHA in GPLs may affect membrane biophysical properties such as fluidity, flexibility, and thickness. Here, we summarize some of the cellular mechanisms for incorporating DHA into membrane GPLs and propose biological effects and functions of DHA-containing membranes of several cell and tissue types.


Assuntos
Ácidos Docosa-Hexaenoicos/química , Glicerofosfolipídeos/química , Glicerofosfolipídeos/metabolismo , Membrana Celular/metabolismo , Ácido Eicosapentaenoico/química , Ácidos Graxos Ômega-3/química , Fluidez de Membrana/fisiologia , Modelos Biológicos
15.
Physiol Genomics ; 21(3): 343-50, 2005 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-15784696

RESUMO

The factors that control fat deposition in adipose tissues are poorly understood. It is known that visceral adipose tissues display a range of biochemical properties that distinguish them from adipose tissues of subcutaneous origin. However, we have little information on gene expression, either in relation to fat deposition or on interspecies variation in fat deposition. The first step in this study was to identify genes expressed in fat depot of cattle using the differential display RT-PCR method. Among the transcripts identified as having differential expression in the two adipose tissues were cell division cycle 42 homolog (CDC42), prefoldin-5, decorin, phosphate carrier, 12S ribosomal RNA gene, and kelch repeat and BTB domain containing 2 (Kbtbd2). In subsequent experiments, we determined the expression levels of these latter genes in the pig and in mice fed either a control or high-fat diet to compare the regulation of fat accumulation in other animal species. The levels of CDC42 and decorin mRNA were found to be higher in visceral adipose tissue than in subcutaneous adipose tissue in cattle, pig, and mice. However, the other genes studied did not show consistent expression patterns between the two tissues in cattle, pigs, and mice. Interestingly, all genes were upregulated in subcutaneous and/or visceral adipose tissues of mice fed the high-fat diet compared with the control diet. The data presented here extend our understanding of gene expression in fat depots and provide further proof that the mechanisms of fat accumulation differ significantly between animal species.


Assuntos
Tecido Adiposo/fisiologia , Regulação da Expressão Gênica , Tecido Adiposo/anatomia & histologia , Animais , Bovinos , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Gorduras na Dieta , Amplificação de Genes , Camundongos , RNA Ribossômico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele , Especificidade da Espécie , Suínos , Vísceras
16.
Endocrinology ; 146(12): 5092-9, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16123168

RESUMO

It has recently been discovered that G protein-coupled receptors (GPCR) 41 and 43 are characterized by having the short chain fatty acids acetate and propionate as their ligands. The objective of this study was to investigate the involvement of GPCR41, GPCR43, and their ligands in the process of adipogenesis. We measured the levels of GPCR41 and GPCR43 mRNA in both adipose and other tissues of the mouse. GRP43 mRNA expression was higher in four types of adipose tissue than in other tissues, whereas GPCR41 mRNA was not detected in any adipose tissues. A high level of GPCR43 expression was found in isolated adipocytes, but expression level was very low in stromal-vascular cells. Expression of GPCR43 was up-regulated in adipose tissues of mice fed a high-fat diet compared with those fed a normal-fat diet. GPCR43 mRNA could not be detected in confluent and undifferentiated 3T3-L1 adipocytes; however, the levels rose with time after the initiation of differentiation. GPCR41 expression was not detected in confluent and differentiated adipocytes. Acetate and propionate treatments increased lipids present as multiple droplets in 3T3-L1 adipocytes. Propionate significantly elevated the level of GPCR43 expression during adipose differentiation, with up-regulation of PPAR-gamma2. Small interfering RNA mediated a reduction of GPCR43 mRNA in 3T3-L1 cells and blocked the process of adipocyte differentiation. In addition, both acetate and propionate inhibited isoproterenol-induced lipolysis in a dose-dependent manner. We conclude that acetate and propionate short chain fatty acids may have important physiological roles in adipogenesis through GPCR43, but not through GPCR41.


Assuntos
Acetatos/farmacologia , Adipogenia/efeitos dos fármacos , Ácidos Graxos Voláteis/farmacologia , Propionatos/farmacologia , Receptores Acoplados a Proteínas G/fisiologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Vasos Sanguíneos/citologia , Vasos Sanguíneos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Relação Dose-Resposta a Droga , Lipólise/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Receptores Acoplados a Proteínas G/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Células Estromais/metabolismo
17.
Elife ; 42015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25898003

RESUMO

Polyunsaturated fatty acids (PUFAs) in phospholipids affect the physical properties of membranes, but it is unclear which biological processes are influenced by their regulation. For example, the functions of membrane arachidonate that are independent of a precursor role for eicosanoid synthesis remain largely unknown. Here, we show that the lack of lysophosphatidylcholine acyltransferase 3 (LPCAT3) leads to drastic reductions in membrane arachidonate levels, and that LPCAT3-deficient mice are neonatally lethal due to an extensive triacylglycerol (TG) accumulation and dysfunction in enterocytes. We found that high levels of PUFAs in membranes enable TGs to locally cluster in high density, and that this clustering promotes efficient TG transfer. We propose a model of local arachidonate enrichment by LPCAT3 to generate a distinct pool of TG in membranes, which is required for normal directionality of TG transfer and lipoprotein assembly in the liver and enterocytes.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Ácido Araquidônico/biossíntese , Membrana Celular/metabolismo , Fosfolipídeos/metabolismo , Triglicerídeos/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/deficiência , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Animais , Técnicas de Cultura de Células , Membrana Celular/química , Enterócitos/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Fígado/citologia , Camundongos , Triglicerídeos/biossíntese
18.
Endocrinology ; 144(3): 754-9, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12586750

RESUMO

Recent research progress indicates a close link between ghrelin, a natural ligand of GH secretagogues receptor (GHS-R), and both the metabolic balance and body composition. To clarify the involvement of ghrelin and GHS-R in the process of adipogenesis, we measured the expression of GHS-R and peroxisome proliferator-activated receptor gamma 2 (PPAR-gamma 2) mRNA in rat adipocytes using semiquantitative RT-PCR methods. The levels of GHS-R mRNA increased by up to 4-fold in adipose tissue from epididymal and parametrial regions as the rat aged from 4-20 wk and were significantly elevated during the differentiation of preadipocytes in vitro. Ghrelin (10(-8) M for 10 d) stimulated the activity of glycerol-3-phosphate dehydrogenase and the differentiation of rat preadipocytes in vitro. Ghrelin treatment also significantly increased the levels of PPAR-gamma 2 mRNA in primary cultured rat differentiated adipocytes. In addition, isoproterenol (10(-8) M, 40 min)-stimulated lipolysis was significantly reduced by simultaneous ghrelin treatment in a dose-dependent manner in vitro. In conclusion, the expression of GHS-R in rat adipocytes increases with the age and during adipogenesis. Ghrelin in vitro stimulates the differentiation of preadipocytes and antagonizes lipolysis. Ghrelin may therefore play an important role in the process of adipogenesis in rats.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Hormônios Peptídicos/fisiologia , Receptores de Superfície Celular/fisiologia , Receptores Acoplados a Proteínas G , Adipócitos/química , Adipócitos/citologia , Animais , Diferenciação Celular , Feminino , Expressão Gênica/efeitos dos fármacos , Grelina , Isoproterenol/farmacologia , Lipólise/efeitos dos fármacos , Masculino , Hormônios Peptídicos/farmacologia , RNA Mensageiro/análise , RNA Mensageiro/genética , Ratos , Ratos Wistar , Receptores de Superfície Celular/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Grelina , Células-Tronco/citologia , Fatores de Transcrição/genética
19.
Cell Metab ; 20(2): 295-305, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24981836

RESUMO

The acyl-chain composition of the major mammalian phospholipid phosphatidylcholine (PC) is distinct in various tissues. Although it was classically suggested that PC diversity is acquired through acyl-chain remodeling, the mechanisms and biological relevance of acyl-chain diversity remain unclear. Here, we show that differences in the substrate selectivity of lysophospholipid acyltransferases regulate tissue PC acyl-chain composition through contribution of both the de novo and remodeling pathways, depending on the fatty acid species. Unexpectedly, while dipalmitoyl-PC (DPPC) is enriched through the remodeling pathway, several polyunsaturated PC molecules accumulate during the de novo pathway. We confirmed this concept for DPPC in pulmonary surfactant and showed that the biophysical properties of this lipid are important to prevent the early onset of acute lung injury. We propose a model of harmonized processes for phospholipid diversification to satisfy in vivo requirements, with an example of its biological relevance.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Fosfatidilcolinas/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/análise , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Animais , Células CHO , Quimiocinas/genética , Quimiocinas/metabolismo , Cricetinae , Cricetulus , Citocinas/genética , Citocinas/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilcolinas/análise , Tensoativos/química
20.
J Biochem ; 154(1): 21-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23698096

RESUMO

Glycerophospholipids are main components of cellular membranes and have numerous structural and functional roles to regulate cellular functions. Polyunsaturated fatty acids, such as arachidonic acid and eicosapentaenoic acid, are mainly located at the sn-2, but not the sn-1 position of glycerophospholipids in an asymmetrical manner and the fatty acid compositions at both the sn-1 and sn-2 positions differ in various cell types and tissues. Asymmetry and diversity of membrane glycerophospholipids are generated in the remodelling pathway (Lands' cycle), which are conducted by the concerted actions of phospholipases A2 (PLA2s) and lysophospholipid acyltransferases (LPLATs). The Lands' cycle was first reported in the 1950s. While PLA2s have been well characterized, little is known about the LPLATs. Recently, several laboratories, including ours, isolated LPLATs that function in the Lands' cycle from the 1-acylglycerol-3-phosphate O-acyltransferase family and the membrane bound O-acyltransferases family. In this review, we summarize recent studies on cloning and characterization of LPLATs that contribute to membrane asymmetry and diversity.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Lipídeos de Membrana/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/química , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Motivos de Aminoácidos , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Fluidez de Membrana , Lipídeos de Membrana/química , Redes e Vias Metabólicas , Camundongos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA