Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Environ Microbiol ; 25(10): 1875-1893, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37188366

RESUMO

Traditional strict separation of fungi into ecological niches as mutualist, parasite or saprotroph is increasingly called into question. Sequences of assumed saprotrophs have been amplified from plant root interiors, and several saprotrophic genera can invade and interact with host plants in laboratory growth experiments. However, it is uncertain if root invasion by saprotrophic fungi is a widespread phenomenon and if laboratory interactions mirror field conditions. Here, we focused on the widespread and speciose saprotrophic genus Mycena and performed (1) a systematic survey of their occurrences (in ITS1/ITS2 datasets) in mycorrhizal roots of 10 plant species, and (2) an analysis of natural abundances of 13 C/15 N stable isotope signatures of Mycena basidiocarps from five field locations to examine their trophic status. We found that Mycena was the only saprotrophic genus consistently found in 9 out of 10 plant host roots, with no indication that the host roots were senescent or otherwise vulnerable. Furthermore, Mycena basidiocarps displayed isotopic signatures consistent with published 13 C/15 N profiles of both saprotrophic and mutualistic lifestyles, supporting earlier laboratory-based studies. We argue that Mycena are widespread latent invaders of healthy plant roots and that Mycena species may form a spectrum of interactions besides saprotrophy also in the field.


Assuntos
Agaricales , Micorrizas , Simbiose , Plantas/microbiologia , Raízes de Plantas/microbiologia
2.
New Phytol ; 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38073143

RESUMO

Rising atmospheric carbon dioxide concentrations (CO2 ) and atmospheric nitrogen (N) deposition have contrasting effects on ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) symbioses, potentially mediating forest responses to environmental change. In this study, we evaluated the cumulative effects of historical environmental change on N concentrations and δ15 N values in AM plants, EM plants, EM fungi, and saprotrophic fungi using herbarium specimens collected in Minnesota, USA from 1871 to 2016. To better understand mycorrhizal mediation of foliar δ15 N, we also analyzed a subset of previously published foliar δ15 N values from across the United States to parse the effects of N deposition and CO2 rise. Over the last century in Minnesota, N concentrations declined among all groups except saprotrophic fungi. δ15 N also declined among all groups of plants and fungi; however, foliar δ15 N declined less in EM plants than in AM plants. In the analysis of previously published foliar δ15 N values, this slope difference between EM and AM plants was better explained by nitrogen deposition than by CO2 rise. Mycorrhizal type did not explain trajectories of plant N concentrations. Instead, plants and EM fungi exhibited similar declines in N concentrations, consistent with declining forest N status despite moderate levels of N deposition.

3.
Proc Natl Acad Sci U S A ; 117(30): 17627-17634, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32661144

RESUMO

Belowground climate change responses remain a key unknown in the Earth system. Plant fine-root response is especially important to understand because fine roots respond quickly to environmental change, are responsible for nutrient and water uptake, and influence carbon cycling. However, fine-root responses to climate change are poorly constrained, especially in northern peatlands, which contain up to two-thirds of the world's soil carbon. We present fine-root responses to warming between +2 °C and 9 °C above ambient conditions in a whole-ecosystem peatland experiment. Warming strongly increased fine-root growth by over an order of magnitude in the warmest treatment, with stronger responses in shrubs than in trees or graminoids. In the first year of treatment, the control (+0 °C) shrub fine-root growth of 0.9 km m-2 y-1 increased linearly by 1.2 km m-2 y-1 (130%) for every degree increase in soil temperature. An extended belowground growing season accounted for 20% of this dramatic increase. In the second growing season of treatment, the shrub warming response rate increased to 2.54 km m-2 °C-1 Soil moisture was negatively correlated with fine-root growth, highlighting that drying of these typically water-saturated ecosystems can fuel a surprising burst in shrub belowground productivity, one possible mechanism explaining the "shrubification" of northern peatlands in response to global change. This previously unrecognized mechanism sheds light on how peatland fine-root response to warming and drying could be strong and rapid, with consequences for the belowground growing season duration, microtopography, vegetation composition, and ultimately, carbon function of these globally relevant carbon sinks.

4.
New Phytol ; 229(6): 3184-3194, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33226653

RESUMO

Conifers are considered to prefer to take up ammonium (NH4+ ) over nitrate (NO3- ). However, this conclusion is mainly based on hydroponic experiments that separate roots from soils. It remains unclear to what extent mature conifers can use nitrate compared to ammonium under field conditions where both roots and soil microbes compete for nitrogen (N). We conducted an in situ whole mature tree nitrogen-15 (15 N) labeling experiment (15 NH4+ vs 15 NO3- ) over 15 d to quantify ammonium and nitrate uptake and assimilation rates in four 40-yr-old monoculture coniferous plantations (Pinus koraiensis, Pinus sylvestris, Picea koraiensis and Larix olgensis, respectively). For the whole tree, 15 NO3- contributed 39% to 90% to total 15 N tracer uptake among four plantations during the study period. At day 3, the 15 NO3- accounted for 77%, 64%, 62% and 59% by Larix olgensis, Pinus koraiensis, Pinus sylvestris and Picea koraiensis, respectively. Our study indicates that mature coniferous trees assimilated nitrate as efficiently as ammonium from soils even at low soil nitrate concentration, in contrast to the results from hydroponic experiments showing that ammonium uptake dominated over nitrate. This implies that mature conifers can adapt to increasing availability of nitrate in soil, for example, under the context of globalization of N deposition and global warming.


Assuntos
Compostos de Amônio , Traqueófitas , Florestas , Nitratos/análise , Nitrogênio/análise , Solo , Árvores
5.
Glob Chang Biol ; 27(10): 2076-2087, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33484031

RESUMO

The effects of nitrogen (N) deposition on forests largely depend on its fate after entering the ecosystem. While several studies have addressed the forest fate of N deposition using 15 N tracers, the long-term fate and redistribution of deposited N in tropical forests remains unknown. Here, we applied 15 N tracers to examine the fates of deposited ammonium ( NH 4 + ) and nitrate ( NO 3 - ) separately over 3 years in a primary and a secondary tropical montane forest in southern China. Three months after 15 N tracer addition, over 60% of 15 N was retained in the forests studied. Total ecosystem retention did not change over the study period, but between 3 months and 3 years following deposition 15 N recovery in plants increased from 10% to 19% and 13% to 22% in the primary and secondary forests, respectively, while 15 N recovery in the organic soil declined from 16% to 2% and 9% to 2%. Mineral soil retained 50% and 35% of 15 N in the primary and secondary forests, with retention being stable over time. The total ecosystem retention of the two N forms did not differ significantly, but plants retained more 15 NO 3 - than 15 NH 4 + and the organic soil more 15 NH 4 + than NO 3 - . Mineral soil did not differ in 15 NH 4 + and 15 NO 3 - retention. Compared to temperate forests, proportionally more 15 N was distributed to mineral soil and plants in these tropical forests. Overall, our results suggest that atmospherically deposited NH 4 + and NO 3 - is rapidly lost in the short term (months) but thereafter securely retained within the ecosystem, with retained N becoming redistributed to plants and mineral soil from the organic soil. This long-term N retention may benefit tropical montane forest growth and enhance ecosystem carbon sequestration.


Assuntos
Ecossistema , Nitrogênio , China , Florestas , Solo , Árvores
6.
Environ Sci Technol ; 54(7): 4231-4239, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32157884

RESUMO

Nitrification is a crucial step in ecosystem nitrogen (N) cycling, but scaling up from plot-based measurements of gross nitrification to catchments is difficult. Here, we employed a newly developed method in which the oxygen isotope anomaly (Δ17O) of nitrate (NO3-) is used as a natural tracer to quantify in situ catchment-scale gross nitrification rate (GNR) for a temperate forest from 2014 to 2017 in northeastern China. The annual GNR ranged from 71 to 120 kg N ha-1 yr-1 (average 94 ± 10 kg N ha-1 yr-1) over the 4 years in this forest. This result and high stream NO3- loss (4.2-8.9 kg N ha-1 yr-1) suggest that the forested catchment may have been N-saturated. At the catchment scale, the total N output of 10.7 kg N ha-1 yr-1, via leaching and gaseous losses, accounts for 56% of the N input from bulk precipitation (19.2 kg N ha-1 yr-1). This result indicates that the forested catchment is still retaining a large fraction of N from atmospheric deposition. Our study suggests that estimating in situ catchment-scale GNR over several years when combined with other conventional flux estimates can facilitate the understanding of N biogeochemical cycling and changes in the ecosystem N status.


Assuntos
Ecossistema , Rios , China , Monitoramento Ambiental , Florestas , Nitratos , Nitrogênio
7.
Environ Microbiol ; 20(10): 3573-3588, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30105856

RESUMO

Several lines of evidence suggest that the agaricoid, non-ectomycorrhizal members of the family Hygrophoraceae (waxcaps) are biotrophic with unusual nitrogen nutrition. However, methods for the axenic culture and lab-based study of these organisms remain to be developed, so our current knowledge is limited to field-based investigations. Addition of nitrogen, lime or organophosphate pesticide at an experimental field site (Sourhope) suppressed fruiting of waxcap basidiocarps. Furthermore, stable isotope natural abundance in basidiocarps were unusually high in 15 N and low in 13 C, the latter consistent with mycorrhizal nutritional status. Similar patterns were found in waxcap basidiocarps from diverse habitats across four continents. Additional data from 14 C analysis of basidiocarps and 13 C pulse label experiments suggest that these fungi are not saprotrophs but rather biotrophic endophytes and possibly mycorrhizal. The consistently high but variable δ15 N values (10-20‰) of basidiocarps further indicate that N acquisition or processing differ from other fungi; we suggest that N may be derived from acquisition of N via soil fauna high in the food chain.


Assuntos
Agaricales/metabolismo , Nitrogênio/metabolismo , Microbiologia do Solo , Carpóforos/metabolismo , Micorrizas/metabolismo
8.
Oecologia ; 187(1): 281-290, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29603096

RESUMO

Longleaf pine savannas house a diverse community of herbaceous N2-fixing legume species that have the potential to replenish nitrogen (N) losses from fire. Whether legumes fill this role depends on the factors that regulate symbiotic fixation, including soil nutrients such as phosphorus (P) and molybdenum (Mo) and the growth and fixation strategies of different species. In greenhouse experiments, we determined how these factors influence fixation for seven species of legumes grown in pure field soil from two different regions of the southeastern US longleaf pine ecosystem. We first added P and Mo individually and in combination, and found that P alone constrained fixation. Phosphorus primarily influenced fixation by regulating legume growth. Second, we added N to plants and found that species either downregulated fixation (facultative strategy) or maintained fixation at a constant rate (obligate strategy). Species varied nearly fourfold in fixation rate, reflecting differences in growth rate, taxonomy and fixation strategy. However, fixation responded strongly to P addition across all species in our study, suggesting that the P cycle regulates N inputs by herbaceous legumes.


Assuntos
Fabaceae , Fósforo , Ecossistema , Pradaria , Nitrogênio , Fixação de Nitrogênio
9.
Mycologia ; 108(4): 638-45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27153881

RESUMO

We assessed the nutritional strategy of true morels (genus Morchella) collected in 2003 and 2004 in Oregon and Alaska, 1 or 2 y after forest fires. We hypothesized that the patterns of stable isotopes (δ(13)C and δ(15)N) in the sporocarps would match those of saprotrophic fungi and that radiocarbon (Δ(14)C) analyses would indicate that Morchella was assimilating old carbon not current-year photosynthate. We compared radiocarbon and stable isotopes in Morchella with values from concurrently collected foliage, the ectomycorrhizal Geopyxis carbonaria (Alb. & Schwein.) Sacc., the saprotrophic Plicaria endocarpoides (Berk.) Rifai, and with literature to determine isotopic values for ectomycorrhizal or saprotrophic fungi. Geopyxis, Plicaria and Morchella, respectively, were 3‰, 5‰ and 6‰ higher in 13C than foliage and 5‰, 7‰ and 7‰ higher in (15)N. High (15)N enrichment in Morchella indicated that recent litter was not the primary source for Morchella nitrogen, and similar (13)C and (15)N enrichments to Plicaria suggest that Morchella assimilates its carbon and nitrogen from the same source pool as this saprotrophic fungus. From radiocarbon analyses Morchella averaged 11 ± 6 y old (n = 19), Plicaria averaged 17 ± 5 y old (n = 3), foliage averaged 1 ± 2 y old (n = 8) and Geopyxis (n = 1) resembled foliage in Δ(14)C. We conclude that morels fruiting in post-fire environments in our study assimilated old carbon and were saprotrophic.


Assuntos
Ascomicetos/metabolismo , Incêndios , Cadeia Alimentar , Alaska , Isótopos/análise , Oregon
10.
Mycorrhiza ; 26(4): 333-43, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26671421

RESUMO

Phlebopus portentosus is one of the most popular wild edible mushrooms in Thailand and can produce sporocarps in the culture without a host plant. However, it is still unclear whether Phlebopus portentosus is a saprotrophic, parasitic, or ectomycorrhizal (ECM) fungus. In this study, Phlebopus portentosus sporocarps were collected from northern Thailand and identified based on morphological and molecular characteristics. We combined mycorrhizal synthesis and stable isotopic analysis to investigate the trophic status of this fungus. In a greenhouse experiment, ECM-like structures were observed in Pinus kesiya at 1 year after inoculation with fungal mycelium, and the association of Phlebopus portentosus and other plant species showed superficial growth over the root surface. Fungus-colonized root tips were described morphologically and colonization confirmed by molecular methods. In stable isotope measurements, the δ(13)C and δ(15)N of natural samples of Phlebopus portentosus differed from saprotrophic fungi. Based on the isotopic patterns of Phlebopus portentosus and its ability to form ECM-like structures in greenhouse experiments, we conclude that Phlebopus portentosus could be an ECM fungus.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Micélio/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Agaricales/classificação , Agaricales/genética , Agaricales/crescimento & desenvolvimento , Agaricales/isolamento & purificação , Basidiomycota/química , Basidiomycota/genética , Basidiomycota/isolamento & purificação , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Micélio/química , Micélio/isolamento & purificação , Micélio/metabolismo , Micorrizas/química , Micorrizas/genética , Micorrizas/isolamento & purificação , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/metabolismo , Raízes de Plantas/microbiologia , Tailândia
11.
New Phytol ; 207(3): 505-18, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25756288

RESUMO

Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain because of the challenges of consistently measuring and interpreting fine-root systems. Traditionally, fine roots have been defined as all roots ≤ 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. Here, we demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, fine roots are either separated into individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine-root pool. Using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally - a c. 30% reduction from previous estimates assuming a single fine-root pool. Future work developing tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi into fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand below-ground processes in the terrestrial biosphere.


Assuntos
Ecossistema , Raízes de Plantas/fisiologia , Biomassa , Micorrizas/fisiologia , Característica Quantitativa Herdável
12.
Mycologia ; 107(4): 688-96, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25911701

RESUMO

Sedecula is a monotypic genus of hypogeous fungi that is rare and endemic to dry conifer forests of the western United States. The only known species, Sedecula pulvinata, was described in 1941 and its taxonomic placement and trophic status have remained uncertain ever since. Here we employ isotopic and molecular phylogenetic analyses to determine its nutritional mode and placement on the fungal tree of life. Phylogenetic analysis indicates that S. pulvinata is closely related to the genus Coniophora, in Coniophoraceae (Boletales). Stable isotope comparisons with known ectomycorrhizal and saprotrophic fungi together with phylogenetic evidence also suggest that S. pulvinata is saprotrophic. We conclude that Sedecula likely represents a unique morphological transition between a resupinate basidiocarp morphology (in Coniophora and relatives) and a hypogeous, sequestrate basidiocarp morphology (in Sedecula). Spore dimensions are amended from the original description.


Assuntos
Agaricales/classificação , Filogenia , Agaricales/genética , DNA Fúngico/genética , Proteínas Fúngicas/genética , Dados de Sequência Molecular
13.
New Phytol ; 201(4): 1431-1439, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24304469

RESUMO

• We used natural and tracer nitrogen (N) isotopes in a Pinus taeda free air CO2 enrichment (FACE) experiment to investigate functioning of ectomycorrhizal and saprotrophic fungi in N cycling. • Fungal sporocarps were sampled in 2004 (natural abundance and (15) N tracer) and 2010 (tracer) and δ(15)N patterns were compared against litter and soil pools. • Ectomycorrhizal fungi with hydrophobic ectomycorrhizas (e.g. Cortinarius and Tricholoma) acquired N from the Oea horizon or deeper. Taxa with hydrophilic ectomycorrhizas acquired N from the Oi horizon (Russula and Lactarius) or deeper (Laccaria, Inocybe, and Amanita). (15)N enrichment patterns for Cortinarius and Amanita in 2010 did not correspond to any measured bulk pool, suggesting that a persistent pool of active organic N supplied these two taxa. Saprotrophic fungi could be separated into those colonizing pine cones (Baeospora), wood, litter (Oi), and soil (Ramariopsis), with δ(15)N of taxa reflecting substrate differences. (15)N enrichment between sources and sporocarps varied across taxa and contributed to δ(15)N patterns. • Natural abundance and (15)N tracers proved useful for tracking N from different depths into fungal taxa, generally corresponded to literature estimates of fungal activity within soil profiles, and provided new insights into interpreting natural abundance δ(15)N patterns.


Assuntos
Fungos/fisiologia , Marcação por Isótopo , Pinus taeda/microbiologia , Pinus taeda/fisiologia , Biomassa , Dióxido de Carbono/metabolismo , Isótopos de Nitrogênio , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Análise de Regressão , Solo
14.
Sci Total Environ ; 929: 172472, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642760

RESUMO

High reactive nitrogen (N) emissions due to anthropogenic activities in China have led to an increase in N deposition and ecosystem degradation. The Chinese government has strictly regulated reactive N emissions since 2010, however, determining whether N deposition has reduced requires long-term monitoring. Here, we report the patterns of N deposition at a rural forest site (Qingyuan) in northeastern China over the last decade. We collected 456 daily precipitation samples from 2014 to 2022 and analysed the temporal dynamics of N deposition. NH4+-N, NO3--N, and total inorganic N (TIN) deposition ranged from 10.5 ± 3.5 (mean ± SD), 6.1 ± 1.6, and 16.6 ± 4.7 kg N ha-1 year-1, respectively. Over the measurement period, TIN deposition at Qingyuan decreased by 55 %, whereas that in comparable sites in East Asia declined by 14-34 %. We used a random forest model to determine factors influencing the deposition of NH4+-N, NO3--N, and TIN during the study period. NH4+-N deposition decreased by 60 % because of decreased agricultural NH3 emissions. Furthermore, NO3--N deposition decreased by 42 %, due to reduced NOx emissions from agricultural soil and fossil fuel combustion. The steep decline in N deposition in northeastern China was attributed to reduced coal consumption, improved emission controls on automobiles, and shifts in agricultural practices. Long-term monitoring is needed to assess regional air quality and the impact of N emission control regulations.

15.
New Phytol ; 196(2): 367-382, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22963677

RESUMO

In this review, we synthesize field and culture studies of the 15N/14N (expressed as δ15N) of autotrophic plants, mycoheterotrophic plants, parasitic plants, soil, and mycorrhizal fungi to assess the major controls of isotopic patterns. One major control for plants and fungi is the partitioning of nitrogen (N) into either 15N-depleted chitin, ammonia, or transfer compounds or 15N-enriched proteinaceous N. For example, parasitic plants and autotrophic hosts are similar in δ15N (with no partitioning between chitin and protein), mycoheterotrophic plants are higher in δ15 N than their fungal hosts, presumably with preferential assimilation of fungal protein, and autotrophic, mycorrhizal plants are lower in 15N than their fungal symbionts, with saprotrophic fungi intermediate, because mycorrhizal fungi transfer 15N-depleted ammonia or amino acids to plants. Similarly, nodules of N2-fixing bacteria transferring ammonia are often higher in δ15N than their plant hosts. N losses via denitrification greatly influence bulk soil δ15N, whereas δ15N patterns within soil profiles are influenced both by vertical patterns of N losses and by N transfers within the soil-plant system. Climate correlates poorly with soil δ15N; climate may primarily influence δ15N patterns in soils and plants by determining the primary loss mechanisms and which types of mycorrhizal fungi and associated vegetation dominate across climatic gradients.


Assuntos
Micorrizas/metabolismo , Nitrogênio/metabolismo , Plantas/metabolismo , Plantas/microbiologia , Processos Heterotróficos , Isótopos de Nitrogênio , Solo/química
17.
Sci Total Environ ; 806(Pt 3): 151194, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34699820

RESUMO

Determining appropriate farming management practices to adapt to climate change with lower environmental costs is important for sustainable agricultural production. In this study, a long-term experiment (1985-2019) was conducted under different management practices combining fertilization rate (no, low and high N fertilizer, N0, N1 and N2), straw additions (no, low and high addition, S0, S1 and S2) with conservation tillage (no-tillage, NT) in the North China Plain (NCP). The Denitrification-Decomposition (DNDC) model was firstly evaluated using the experimental data, and then applied to simulate the changes of crop yields, soil organic carbon (SOC), and N2O emissions under different management practices combined with climate change scenarios, under low and high emission scenarios of societal development pathways (SSP245 and SSP585, respectively) with climate projections from 2031 to 2100. Under the low emission scenario (SSP245), wheat yields were the highest with the NT-N1-S2 treatment (a 23% increase relative to the baseline (1981-2010)). For maize yields, the NT-N1-S1 treatment increased 46% relative to baseline under the SSP585, whereas, the yields increased less in all treatments under SSP245-2040s. The SOC was predicted to increase by 6-60% by 2100 under SSP245. Straw addition and tillage were the main factors influencing SOC. N fertilizer was the most important driver for wheat and maize yields, however, N2O emissions from soil increased with increased application of N fertilizer. Therefore, the no-tillage method under low N fertilizer and high straw addition (NT-N1-S2) is recommended to promote crop yields and substantially increase SOC under SSP245 and SSP585. Conservation agriculture practices can potentially offset crop yield reductions, increase soil quality, and reduce greenhouse gas emissions in the NCP, and ensure crop production to meet the growing demand for food under future climate change.


Assuntos
Mudança Climática , Solo , Agricultura , Carbono/análise , China , Fertilizantes , Zea mays
18.
Nat Commun ; 13(1): 880, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169118

RESUMO

The impacts of enhanced nitrogen (N) deposition on the global forest carbon (C) sink and other ecosystem services may depend on whether N is deposited in reduced (mainly as ammonium) or oxidized forms (mainly as nitrate) and the subsequent fate of each. However, the fates of the two key reactive N forms and their contributions to forest C sinks are unclear. Here, we analyze results from 13 ecosystem-scale paired 15N-labelling experiments in temperate, subtropical, and tropical forests. Results show that total ecosystem N retention is similar for ammonium and nitrate, but plants take up more labelled nitrate ([Formula: see text]%) ([Formula: see text]) than ammonium ([Formula: see text]%) while soils retain more ammonium ([Formula: see text]%) than nitrate ([Formula: see text]%). We estimate that the N deposition-induced C sink in forests in the 2010s  is [Formula: see text] Pg C yr-1, higher than previous estimates because of a larger role for oxidized N and greater rates of global N deposition.


Assuntos
Compostos de Amônio/análise , Sequestro de Carbono/fisiologia , Recuperação e Remediação Ambiental , Florestas , Nitratos/análise , Árvores/metabolismo , Meio Ambiente , Isótopos de Nitrogênio/química , Óxidos de Nitrogênio/análise , Solo/química
19.
Mycologia ; 103(2): 280-90, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21139028

RESUMO

The nutritional modes of genera in Hygrophoraceae (Basidiomycota: Agaricales), apart from the ectomycorrhizal Hygrophorus and lichen-forming taxa, are uncertain. New δ(15)N and δ(13)C values were obtained from 15 taxa under Hygrophoraceae collected in central Massachusetts and combined with isotopic datasets from five prior studies including a further 12 species using a data standardization method to allow cross-site comparison. Based on these data, we inferred the probable nutritional modes for species of Hygrophorus, Hygrocybe, Humidicutis, Cuphophyllus and Gliophorus. A phylogeny of Hygrophoraceae was constructed by maximum likelihood analysis of nuclear ribosomal 28S and 5.8S sequences and standardized δ(15)N and δ(13)C values were used for parsimony optimization on this phylogeny. Our results supported a mode of biotrophy in Hygrocybe, Humidicutis, Cuphophyllus and Gliophorus quantitatively unlike that in more than 450 other fungal taxa sampled in the present and prior studies. Parsimony optimization of stable isotope data suggests moderate conservation of nutritional strategies in Hygrophoraceae and a single switch to a predominantly ectomycorrhizal life strategy in the lineage leading to Hygrophorus. We conclude that Hygrophoraceae of previously unknown nutritional status are unlikely to be saprotrophs and are probably in symbiosis with bryophytes or other understory plants.


Assuntos
Agaricales/química , Agaricales/classificação , Filogenia , Agaricales/genética , Agaricales/isolamento & purificação , Isótopos de Carbono/análise , DNA Fúngico/genética , DNA Ribossômico/genética , Massachusetts , Dados de Sequência Molecular , Isótopos de Nitrogênio/análise
20.
Sci Total Environ ; 794: 148737, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34323746

RESUMO

Peatlands store one third of global soil carbon (C) and up to 15% of global soil nitrogen (N) but often have low plant nutrient availability owing to slow organic matter decomposition under acidic and waterlogged conditions. In rainwater-fed ombrotrophic peatlands, elevated atmospheric N deposition has increased N availability with potential consequences to ecosystem nutrient cycling. Here, we studied how 14 years of continuous N addition with either nitrate or ammonium had affected ericoid mycorrhizal (ERM) shrubs at Whim Bog, Scotland. We examined whether enrichment has influenced foliar nutrient stoichiometry and assessed using N stable isotopes whether potential changes in plant nutrient constraints are linked with plant N uptake through ERM fungi versus direct plant uptake. High doses of ammonium alleviated N deficiency in Calluna vulgaris and Erica tetralix, whereas low doses of ammonium and nitrate improved plant phosphorus (P) nutrition, indicated by the lowered foliar N:P ratios. Root acid phosphatase activities correlated positively with foliar N:P ratios, suggesting enhanced P uptake as a result of improved N nutrition. Elevated foliar δ15N of fertilized shrubs suggested that ERM fungi were less important for N supply with N fertilization. Increases in N availability in peat porewater and in direct nonmycorrhizal N uptake likely have reduced plant nitrogen uptake via mycorrhizal pathways. As the mycorrhizal N uptake correlates with the reciprocal C supply from host plants to the soil, such reduction in ERM activity may affect peat microbial communities and even accelerate C loss via decreased ERM activity and enhanced saprotrophic activity. Our results thus introduce a previously unrecognized mechanism for how anthropogenic N pollution may affect nutrient and carbon cycling within peatland ecosystems.


Assuntos
Micorrizas , Nitrogênio , Ecossistema , Nutrientes , Fósforo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA