Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxics ; 11(6)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37368630

RESUMO

Heavy metals have become widespread urban pollutants, exposing vulnerable age groups such as children to potential risk. Specialists need feasible approaches that can routinely assist them in customizing options for sustainable and safer urban playgrounds. The aim of this research was to explore the practical relevance of the X-ray Fluorescence (XRF) method from the perspective of landscaping specialists, and the practical significance of screening for those heavy metals that currently present elevated levels across urban environments Europe-wide. Soil samples from six public children's playgrounds of different typologies from Cluj-Napoca, Romania, were analyzed. The results indicated that this method was sensitive to identifying thresholds stipulated in legislation for the screened elements (V, Cr, Mn, Ni, Cu, Zn, As, and Pb). Coupled with the calculation of pollution indexes, this method can serve as a quick orientation in landscaping options for urban playgrounds. The pollution load index (PLI) for the screened metals showed that three sites displayed baseline pollution with incipient deterioration in soil quality (PLI = 1.01-1.51). The highest contribution to the PLI among the screened elements, depending on the site, was due to Zn, Pb, As, and Mn. The average levels of the detected heavy metals were within admissible limits according to national legislation. Implementable protocols addressed to different categories of specialists could help to transition towards safer playgrounds and more research on accurate cost-effective procedures to overcome the limitations of existing approaches is currently needed.

2.
Foods ; 12(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37835231

RESUMO

The study examined soil and honey samples from the Maramureș region, assessing potentially toxic elements and their concentrations. The highest concentrations were found for (Cu), (Zn), (Pb), (Cr), (Ni), (Cd), (Co), and (As), while (Hg) remained below the detection limit. Samples near anthropogenic sources displayed elevated metal levels, with the Aurul settling pond and Herja mine being major contamination sources. Copper concentrations exceeded the legal limits in areas near these sources. Zinc concentrations were highest near mining areas, and Pb and Cd levels surpassed the legal limits near beehives producing acacia honey. Nickel and Co levels were generally within limits but elevated near the Herja mine. The study highlighted the role of anthropogenic activities in heavy metal pollution. In the second part, honey samples were analyzed for heavy metal concentrations, with variations across types and locations. Positive correlations were identified between certain elements in honey, influenced by factors like location and pollution sources. The research emphasized the need for pollution control measures to ensure honey safety. The bioaccumulation factor analysis indicated a sequential metal transfer from soil to honey. The study's comprehensive approach sheds light on toxic element contamination in honey, addressing pollution sources and pathways.

3.
Ecol Evol ; 9(7): 4103-4115, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31015991

RESUMO

Agricultural intensification is a major driver of wild bee decline. Vineyards may be inhabited by plant and animal species, especially when the inter-row space is vegetated with spontaneous vegetation or cover crops. Wild bees depend on floral resources and suitable nesting sites which may be found in vineyard inter-rows or in viticultural landscapes. Inter-row vegetation is managed by mulching, tillage, and/or herbicide application and results in habitat degradation when applied intensively. Here, we hypothesize that lower vegetation management intensities, higher floral resources, and landscape diversity affect wild bee diversity and abundance dependent on their functional traits. We sampled wild bees semi-quantitatively in 63 vineyards representing different vegetation management intensities across Europe in 2016. A proxy for floral resource availability was based on visual flower cover estimations. Management intensity was assessed by vegetation cover (%) twice a year per vineyard. The Shannon Landscape Diversity Index was used as a proxy for landscape diversity within a 750 m radius around each vineyard center point. Wild bee communities were clustered by country. At the country level, between 20 and 64 wild bee species were identified. Increased floral resource availability and extensive vegetation management both affected wild bee diversity and abundance in vineyards strongly positively. Increased landscape diversity had a small positive effect on wild bee diversity but compensated for the negative effect of low floral resource availability by increasing eusocial bee abundance. We conclude that wild bee diversity and abundance in vineyards is efficiently promoted by increasing floral resources and reducing vegetation management frequency. High landscape diversity further compensates for low floral resources in vineyards and increases pollinating insect abundance in viticulture landscapes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA