Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Photochem Photobiol ; 100(2): 419-433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38098287

RESUMO

Riboswitches are mRNA segments that regulate gene expression in response to ligand binding. The Class I preQ1 riboswitch consists of a stem-loop and an adenine-rich single-stranded tail ("L3"), which adopt a pseudoknot structure upon binding of the ligand preQ1 . We inserted 2-aminopurine (2-AP), a fluorescent analogue of adenine (A), into the riboswitch at six different positions within L3. Here, 2-AP functions both as a spectroscopic probe and as a "mutation" that reveals how alteration of specific A residues impacts the riboswitch. Using fluorescence and circular dichroism spectroscopy, we found that 2-AP decreases the affinity of the riboswitch for preQ1 at all labeling positions tested, although modified and unmodified variants undergo the same global conformational changes at sufficiently high preQ1 concentration. 2-AP substitution is most detrimental to ligand binding at sites proximal to the ligand-binding pocket, while distal labeling sites exhibit the largest impacts on the stability of the L3 domain in the absence of ligand. Insertion of multiple 2-AP residues does not induce significant additional disruptions. Our results show that interactions involving the A residues in L3 play a critical role in ligand recognition by the preQ1 riboswitch and that 2-AP substitution exerts complex and varied impacts on this riboswitch.


Assuntos
Riboswitch , Ligantes , Adenina , Conformação de Ácido Nucleico
2.
J Phys Chem Lett ; 13(34): 8010-8018, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35984918

RESUMO

RNA plays a critical role in many biological processes, and the structures it adopts are intimately linked to those functions. Among many factors that contribute to RNA folding, van der Waals interactions between adjacent nucleobases stabilize structures in which the bases are stacked on top of one another. Here, we utilize fluorescence-detected circular dichroism spectroscopy (FDCD) to investigate base-stacking heterogeneity in RNA labeled with the fluorescent adenine analogue 2-aminopurine (2-AP). Comparison of standard (transmission-detected) CD and FDCD spectra reveals that in dinucleotides, 2-AP fluorescence is emitted almost exclusively by unstacked molecules. In a trinucleotide, some fluorescence is emitted by a population of stacked and highly quenched molecules, but more than half originates from a minor ∼10% population of unstacked molecules. The combination of FDCD and standard CD measurements reveals the prevalence of stacked and unstacked conformational subpopulations as well as their relative fluorescence quantum yields.


Assuntos
2-Aminopurina , RNA , 2-Aminopurina/química , Dicroísmo Circular , Conformação de Ácido Nucleico , RNA/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA