Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Circulation ; 128(18): 2026-38, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24014835

RESUMO

BACKGROUND: Repair of the endothelium after vascular injury is crucial for preserving endothelial integrity and preventing the development of vascular disease. The underlying mechanisms of endothelial cell repair are largely unknown. We sought to investigate whether endothelial microparticles (EMPs), released from apoptotic endothelial cells (ECs), influence EC repair. METHODS AND RESULTS: Systemic treatment of mice with EMPs after electric denudation of the endothelium accelerated reendothelialization in vivo. In vitro experiments revealed that EMP uptake in ECs promotes EC migration and proliferation, both critical steps in endothelial repair. To dissect the underlying mechanisms, Taqman microRNA array was performed, and microRNA (miR)-126 was identified as the predominantly expressed miR in EMPs. The following experiments demonstrated that miR-126 was transported into recipient human coronary artery endothelial cells by EMPs and functionally regulated the target protein sprouty-related, EVH1 domain-containing protein 1 (SPRED1). Knockdown of miR-126 in EMPs abrogated EMP-mediated effects on human coronary artery endothelial cell migration and proliferation in vitro and reendothelialization in vivo. Interestingly, after simulating diabetic conditions, EMPs derived from glucose-treated ECs contained significantly lower amounts of miR-126 and showed reduced endothelial repair capacity in vitro and in vivo. Finally, expression analysis of miR-126 in circulating microparticles from 176 patients with stable coronary artery disease with and without diabetes mellitus revealed a significantly reduced miR-126 expression in circulating microparticles from diabetic patients. CONCLUSIONS: Endothelial microparticles promote vascular endothelial repair by delivering functional miR-126 into recipient cells. In pathological hyperglycemic conditions, EMP-mediated miR-126-induced EC repair is altered.


Assuntos
Micropartículas Derivadas de Células/fisiologia , Vasos Coronários/fisiologia , Células Endoteliais/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/fisiopatologia , Movimento Celular/fisiologia , Proliferação de Células , Micropartículas Derivadas de Células/patologia , Células Cultivadas , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/lesões , Vasos Coronários/patologia , Células Endoteliais/patologia , Glucose/toxicidade , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Camundongos Endogâmicos C57BL , Cicatrização/fisiologia
2.
J Am Heart Assoc ; 3(6): e001249, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25349183

RESUMO

BACKGROUND: Circulating microRNAs (miRNAs) are differentially regulated and selectively packaged in microvesicles (MVs). We evaluated whether circulating vascular and endothelial miRNAs in patients with stable coronary artery disease have prognostic value for the occurrence of cardiovascular (CV) events. METHODS AND RESULTS: Ten miRNAs involved in the regulation of vascular performance-miR-126, miR-222, miR-let7d, miR-21, miR-20a, miR-27a, miR-92a, miR-17, miR-130, and miR-199a-were quantified in plasma and circulating MVs by reverse transcription polymerase chain reaction in 181 patients with stable coronary artery disease. The median duration of follow-up for major adverse CV event-free survival was 6.1 years (range: 6.0-6.4 years). Events occurred in 55 patients (31.3%). There was no significant association between CV events and plasma level of the selected miRNAs. In contrast, increased expression of miR-126 and miR-199a in circulating MVs was significantly associated with a lower major adverse CV event rate. In univariate analysis, above-median levels of miR-126 in circulating MVs were predictors of major adverse CV event-free survival (hazard ratio: 0.485 [95% CIAUTHOR: Is 95% CI correct?: 0.278 to 0.846]; P=0.007) and percutaneous coronary interventions (hazard ratio: 0.458 [95% CI: 0.222 to 0.945]; P=0.03). Likewise, an increased level of miR-199a in circulating MVs was associated with a reduced risk of major adverse CV events (hazard ratio: 0.518 [95% CI: 0.299 to 0.898]; P=0.01) and revascularization (hazard ratio: 0.439 [95% CI: 0.232 to 0.832]; P=0.01) in univariate analysis. miRNA expression analysis in plasma compartments revealed that miR-126 and miR-199a are present mainly in circulating MVs. MV-sorting experiments showed that endothelial cells and platelets were found to be the major cell sources of MVs containing miR-126 and miR-199a, respectively. CONCLUSION: MVs containing miR-126 and miR-199a but not freely circulating miRNA expression predict the occurrence of CV events in patients with stable coronary artery disease.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/genética , Células Endoteliais/metabolismo , MicroRNAs/sangue , MicroRNAs/genética , Idoso , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/mortalidade , Doença da Artéria Coronariana/terapia , Progressão da Doença , Intervalo Livre de Doença , Feminino , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Prospectivos , Fatores de Proteção , Medição de Risco , Fatores de Risco , Fatores de Tempo
3.
Cardiovasc Res ; 98(1): 94-106, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23341580

RESUMO

AIMS: Diabetes is a major risk factor for cardiovascular diseases. Circulating endothelial microparticles (EMP) are increased in diabetic patients, but their potential contribution in atherogenesis is unclear. We sought to determine the role of EMP derived under high glucose conditions in the development of atherosclerosis. METHODS AND RESULTS: EMP were generated from human coronary endothelial cells (HCAEC) exposed to high glucose concentrations in order to mimic diabetic conditions. These EMP were defined as 'injured' EMP (iEMP) and their effects were compared with EMP generated from 'healthy' untreated HCAEC. iEMP injection significantly impaired endothelial function in ApoE(-/-) mice compared with EMP and vehicle treatment. Immunofluorescent experiments showed increased macrophage infiltration and adhesion protein expression in atherosclerotic lesions of iEMP-treated ApoE(-/-) mice compared with controls. To further investigate the underlying mechanism of iEMP-induced vascular inflammation, additional in vitro experiments were performed. iEMP, but not EMP, induced activation of HCAEC in a time- and dose-dependent manner and increased monocyte adhesion. Further experiments demonstrated that iEMP induced activation of HCAEC by phosphorylation of p38 into its biologically active form phospho-p38. Inhibition of p38 activation abrogated iEMP-dependent induction of adhesion proteins and monocyte adhesion on HCAEC. Moreover, we could demonstrate that iEMP show increased NADPH oxidase activity and contain significantly higher level of reactive oxygen species (ROS) than EMP. iEMP triggered ROS production in HCAEC and thereby activate p38 in an ROS-dependent manner. CONCLUSION: High glucose condition increases NADPH oxidase activity in endothelial microparticles that amplify endothelial inflammation and impair endothelial function by promoting activation of the endothelium. These findings provide new insights into the pathogenesis of diabetes-associated atherosclerosis.


Assuntos
Micropartículas Derivadas de Células/enzimologia , Células Endoteliais/enzimologia , Hiperglicemia/complicações , NADPH Oxidases/fisiologia , Animais , Adesão Celular , Células Cultivadas , Células Endoteliais/fisiologia , Humanos , Molécula 1 de Adesão Intercelular/análise , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Molécula 1 de Adesão de Célula Vascular/análise , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA