Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(42): e2123070119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215493

RESUMO

Success stories are rare in conservation science, hindered also by the research-implementation gap, where scientific insights rarely inform practice and practical implementation is rarely evaluated scientifically. Amphibian population declines, driven by multiple stressors, are emblematic of the freshwater biodiversity crisis. Habitat creation is a straightforward conservation action that has been shown to locally benefit amphibians, as well as other taxa, but does it benefit entire amphibian communities at large spatial scales? Here, we evaluate a landscape-scale pond-construction program by fitting dynamic occupancy models to 20 y of monitoring data for 12 pond-breeding amphibian species in the Swiss state Aargau, a densely populated area of the Swiss lowlands with intensive land use. After decades of population declines, the number of occupied ponds increased statewide for 10 out of 12 species, while one species remained stable and one species further declined between 1999 and 2019. Despite regional differences, in 77% of all 43 regional metapopulations, the colonization and subsequent occupation of new ponds stabilized (14%) or increased (63%) metapopulation size. Likely mechanisms include increased habitat availability, restoration of habitat dynamics, and increased connectivity between ponds. Colonization probabilities reflected species-specific preferences for characteristics of ponds and their surroundings, which provides evidence-based information for future pond construction targeting specific species. The relatively simple but landscape-scale and persistent conservation action of constructing hundreds of new ponds halted declines and stabilized or increased the state-wide population size of all but one species, despite ongoing pressures from other stressors in a human-dominated landscape.


Assuntos
Anfíbios , Biodiversidade , Animais , Conservação dos Recursos Naturais , Ecossistema , Humanos , Lagoas , Especificidade da Espécie
2.
Environ Microbiol ; 26(4): e16612, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622804

RESUMO

Beauveria brongniartii is a fungal pathogen that infects the beetle Melolontha melolontha, a significant agricultural pest in Europe. While research has primarily focused on the use of B. brongniartii for controlling M. melolontha, the genomic structure of the B. brongniartii population remains unknown. This includes whether its structure is influenced by its interaction with M. melolontha, the timing of beetle-swarming flights, geographical factors, or reproductive mode. To address this, we analysed genome-wide SNPs to infer the population genomics of Beauveria spp., which were isolated from infected M. melolontha adults in an Alpine region. Surprisingly, only one-third of the isolates were identified as B. brongniartii, while two-thirds were distributed among cryptic taxa within B. pseudobassiana, a fungal species not previously recognized as a pathogen of M. melolontha. Given the prevalence of B. pseudobassiana, we conducted analyses on both species. We found no spatial or temporal genomic patterns within either species and no correlation with the population structure of M. melolontha, suggesting that the dispersal of the fungi is independent of the beetle. Both species exhibited clonal population structures, with B. brongniartii fixed for one mating type and B. pseudobassiana displaying both mating types. This implies that factors other than mating compatibility limit sexual reproduction. We conclude that the population genomic structure of Beauveria spp. is primarily influenced by predominant asexual reproduction and dispersal.


Assuntos
Beauveria , Besouros , Animais , Beauveria/genética , Besouros/microbiologia , Genômica
3.
Conserv Biol ; : e14165, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38711380

RESUMO

The success of ponds constructed to restore ecological infrastructure for pond-breeding amphibians and benefit aquatic biodiversity depends on where and how they are built. We studied effects of pond and landscape characteristics, including connectivity, on metapopulation dynamics of 12 amphibian species in Switzerland. To understand the determinants of long-term occupancy (here summarized as incidence), environmental effects on both colonization and persistence should be considered. We fitted dynamic occupancy models to 20 years of monitoring data on a pond construction program to quantify effects of pond and landscape characteristics and different connectivity metrics on colonization and persistence probabilities in constructed ponds. Connectivity to existing populations explained dynamics better than structural connectivity metrics, and simple metrics (distance to the nearest neighbor population, population density) were useful surrogates for dispersal kernel-weighted metrics commonly used in metapopulation theory. Population connectivity mediated the persistence of conservation target species in new ponds, suggesting source-sink dynamics in newly established populations. Population density captured this effect well and could be used by practitioners for site selection. Ponds created where there were 2-4 occupied ponds within a radius of ∼0.5 km had >3.5 times higher incidence of target species (median) than isolated ponds. Species had individual preferences regarding pond characteristics, but breeding sites with larger (≥100 m2) total water surface area, that temporarily dried, and that were in surroundings with maximally 50% forest benefitted multiple target species. Pond diversity will foster amphibian diversity at the landscape scale.


Construcción de estanques para meta poblaciones de anfibios Resumen El éxito de los estanques construidos para restaurar la infraestructura ecológica para los anfibios que allí se reproducen y para beneficiar la biodiversidad acuática depende de en dónde y cómo se construyen. Estudiamos los efectos de las características de los estanques y el paisaje, incluida la conectividad, sobre la dinámica de las meta poblaciones de 12 especies de anfibios en Suiza. Se deben considerar los efectos ambientales sobre la colonización y la persistencia para entender las determinantes de la ocupación a largo plazo (resumida aquí como incidencia). Ajustamos los modelos dinámicos de ocupación a datos de 20 años de monitoreo de un programa de construcción de estanques para cuantificar los efectos de las características del estanque y el paisaje y las diferentes medidas de conectividad para las probabilidades de colonización y persistencia en los estanques construidos. La conectividad con las poblaciones existentes explicó mejor la dinámica que las medidas de conectividad estructural, mientras que las medidas simples (distancia a la población vecina más cercana, densidad poblacional) fueron sustitutos útiles para las medidas de dispersión ponderadas al núcleo que se usan con frecuencia en la teoría de meta poblaciones. La conectividad poblacional medió la persistencia de las especies a conservar en los estanques nuevos, lo que sugiere que hay dinámicas fuente­sumidero en las poblaciones recién establecidas. La densidad poblacional capturó muy bien este efecto y podría usarse para que los practicantes seleccionen sitios. Los estanques construidos en un radio de ≈0.5 km de dos a cuatro estanques ocupados tuvieron >3.5 más incidencia de las especies a conservar (mediana) que los estanques aislados. Las especies tuvieron preferencias individuales con respecto a las características de los estanques, aunque los sitios de reproducción con una mayor superficie total de agua (≥100 m2), que se secaban temporalmente y que estaban rodeados con un máximo de 50% de bosque beneficiaron a muchas especies a conservar. Por esto, la diversidad de estanques promoverá la diversidad de anfibios a escala de paisaje.

4.
Bull Entomol Res ; 111(5): 511-516, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33461630

RESUMO

The European (Melolontha melolontha L.) and Forest (M. hippocastani F.) cockchafer are widespread pests throughout Central Europe. Both species exhibit a 3-5-year life cycle and occur in temporally shifted populations, which have been monitored and documented for more than 100 years. Visual identification of adults and larvae belonging to these morphologically similar species requires expertise and, particularly in the case of larvae, is challenging and equivocal. The goal of the study was the development of an efficient and fast molecular genetic tool for the identification and discrimination of M. melolontha and M. hippocastani. We established a collection of both species from Switzerland, Austria and Northern Italy in 2016, 2017 and 2018. An approximately 1550 bp long fragment of the cytochrome c oxidase subunit 1 (CO1) mitochondrial gene was amplified and sequenced in 13 M. melolontha and 13 M. hippocastani beetles. Alignment of the new sequences with reference sequences (NCBI GenBank and BOLDSYSTEMS databases) and subsequent phylogenetic analysis revealed consistent clustering of the two species. After the identification of M. melolontha and M. hippocastani species-specific single nucleotide polymorphisms (SNPs) in the CO1 alignment, we developed an effective SNP tool based on the ABI PRISM® SNaPshot™ Multiplex Kit for the rapid and accurate species discrimination of adults and larvae.


Assuntos
Besouros/classificação , Besouros/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , Europa (Continente) , Genes Mitocondriais/genética , Larva/classificação , Larva/genética , Filogenia , Especificidade da Espécie
5.
Mol Ecol ; 29(22): 4350-4365, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32969558

RESUMO

It has long been discussed to what extent related species develop similar genetic mechanisms to adapt to similar environments. Most studies documenting such convergence have either used different lineages within species or surveyed only a limited portion of the genome. Here, we investigated whether similar or different sets of orthologous genes were involved in genetic adaptation of natural populations of three related plant species to similar environmental gradients in the Alps. We used whole-genome pooled population sequencing to study genome-wide SNP variation in 18 natural populations of three Brassicaceae (Arabis alpina, Arabidopsis halleri, and Cardamine resedifolia) from the Swiss Alps. We first de novo assembled draft reference genomes for all three species. We then ran population and landscape genomic analyses with ~3 million SNPs per species to look for shared genomic signatures of selection and adaptation in response to similar environmental gradients acting on these species. Genes with a signature of convergent adaptation were found at significantly higher numbers than expected by chance. The most closely related species pair showed the highest relative over-representation of shared adaptation signatures. Moreover, the identified genes of convergent adaptation were enriched for nonsynonymous mutations, suggesting functional relevance of these genes, even though many of the identified candidate genes have hitherto unknown or poorly described functions based on comparison with Arabidopsis thaliana. We conclude that adaptation to heterogeneous Alpine environments in related species is partly driven by convergent evolution, but that most of the genomic signatures of adaptation remain species-specific.


Assuntos
Adaptação Fisiológica , Arabis , Brassicaceae , Cardamine , Adaptação Fisiológica/genética , Brassicaceae/genética , Genômica
6.
Mol Ecol ; 29(11): 1972-1989, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32395881

RESUMO

It is generally accepted that the spatial distribution of neutral genetic diversity within a species' native range mostly depends on effective population size, demographic history, and geographic position. However, it is unclear how genetic diversity at adaptive loci correlates with geographic peripherality or with habitat suitability within the ecological niche. Using exome-wide genomic data and distribution maps of the Alpine range, we first tested whether geographic peripherality correlates with four measures of population genetic diversity at > 17,000 SNP loci in 24 Alpine populations (480 individuals) of Swiss stone pine (Pinus cembra) from Switzerland. To distinguish between neutral and adaptive SNP sets, we used four approaches (two gene diversity estimates, FST outlier test, and environmental association analysis) that search for signatures of selection. Second, we established ecological niche models for P. cembra in the study range and investigated how habitat suitability correlates with genetic diversity at neutral and adaptive loci. All estimates of neutral genetic diversity decreased with geographic peripherality, but were uncorrelated with habitat suitability. However, heterozygosity (He ) at adaptive loci based on Tajima's D declined significantly with increasingly suitable conditions. No other diversity estimates at adaptive loci were correlated with habitat suitability. Our findings suggest that populations at the edge of a species' geographic distribution harbour limited neutral genetic diversity due to demographic properties. Moreover, we argue that populations from suitable habitats went through strong selection processes, are thus well adapted to local conditions, and therefore exhibit reduced genetic diversity at adaptive loci compared to populations at niche margins.


Assuntos
Ecossistema , Genética Populacional , Pinus , Adaptação Biológica , Variação Genética , Pinus/genética , Seleção Genética , Suíça
7.
Mol Ecol ; 28(17): 3848-3856, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31392753

RESUMO

Conservation genetics is a well-established scientific field. However, limited information transfer between science and practice continues to hamper successful implementation of scientific knowledge in conservation practice and management. To mitigate this challenge, we have established a conservation genetics community, which entails an international exchange-and-skills platform related to genetic methods and approaches in conservation management. First, it allows for scientific exchange between researchers during annual conferences. Second, personal contact between conservation professionals and scientists is fostered by organising workshops and by popularising knowledge on conservation genetics methods and approaches in professional journals in national languages. Third, basic information on conservation genetics has been made accessible by publishing an easy-to-read handbook on conservation genetics for practitioners. Fourth, joint projects enabled practitioners and scientists to work closely together from the start of a project in order to establish a tight link between applied questions and scientific background. Fifth, standardised workflows simplifying the implementation of genetic tools in conservation management have been developed. By establishing common language and trust between scientists and practitioners, all these measures help conservation genetics to play a more prominent role in future conservation planning and management.


Assuntos
Conservação dos Recursos Naturais , Fenômenos Genéticos , Animais , Ecossistema , Ciência
8.
J Evol Biol ; 31(6): 784-800, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29518274

RESUMO

Studies of genetic adaptation in plant populations along elevation gradients in mountains have a long history, but there has until now been neither a synthesis of how frequently plant populations exhibit adaptation to elevation nor an evaluation of how consistent underlying trait differences across species are. We reviewed studies of adaptation along elevation gradients (i) from a meta-analysis of phenotypic differentiation of three traits (height, biomass and phenology) from plants growing in 70 common garden experiments; (ii) by testing elevation adaptation using three fitness proxies (survival, reproductive output and biomass) from 14 reciprocal transplant experiments; (iii) by qualitatively assessing information at the molecular level, from 10 genomewide surveys and candidate gene approaches. We found that plants originating from high elevations were generally shorter and produced less biomass, but phenology did not vary consistently. We found significant evidence for elevation adaptation in terms of survival and biomass, but not for reproductive output. Variation in phenotypic and fitness responses to elevation across species was not related to life history traits or to environmental conditions. Molecular studies, which have focussed mainly on loci related to plant physiology and phenology, also provide evidence for adaptation along elevation gradients. Together, these studies indicate that genetically based trait differentiation and adaptation to elevation are widespread in plants. We conclude that a better understanding of the mechanisms underlying adaptation, not only to elevation but also to environmental change, will require more studies combining the ecological and molecular approaches.


Assuntos
Adaptação Fisiológica/genética , Fenômenos Fisiológicos Vegetais/genética , Plantas/classificação , Altitude , Evolução Biológica
9.
BMC Genomics ; 18(1): 69, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-28077077

RESUMO

BACKGROUND: Microsatellite markers are widely used for estimating genetic diversity within and differentiation among populations. However, it has rarely been tested whether such estimates are useful proxies for genome-wide patterns of variation and differentiation. Here, we compared microsatellite variation with genome-wide single nucleotide polymorphisms (SNPs) to assess and quantify potential marker-specific biases and derive recommendations for future studies. Overall, we genotyped 180 Arabidopsis halleri individuals from nine populations using 20 microsatellite markers. Twelve of these markers were originally developed for Arabidopsis thaliana (cross-species markers) and eight for A. halleri (species-specific markers). We further characterized 2 million SNPs across the genome with a pooled whole-genome re-sequencing approach (Pool-Seq). RESULTS: Our analyses revealed that estimates of genetic diversity and differentiation derived from cross-species and species-specific microsatellites differed substantially and that expected microsatellite heterozygosity (SSR-H e) was not significantly correlated with genome-wide SNP diversity estimates (SNP-H e and θ Watterson) in A. halleri. Instead, microsatellite allelic richness (A r) was a better proxy for genome-wide SNP diversity. Estimates of genetic differentiation among populations (F ST) based on both marker types were correlated, but microsatellite-based estimates were significantly larger than those from SNPs. Possible causes include the limited number of microsatellite markers used, marker ascertainment bias, as well as the high variance in microsatellite-derived estimates. In contrast, genome-wide SNP data provided unbiased estimates of genetic diversity independent of whether genome- or only exome-wide SNPs were used. Further, we inferred that a few thousand random SNPs are sufficient to reliably estimate genome-wide diversity and to distinguish among populations differing in genetic variation. CONCLUSIONS: We recommend that future analyses of genetic diversity within and differentiation among populations use randomly selected high-throughput sequencing-based SNP data to draw conclusions on genome-wide diversity patterns. In species comparable to A. halleri, a few thousand SNPs are sufficient to achieve this goal.


Assuntos
Arabidopsis/genética , Genômica , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único , Genoma de Planta/genética
10.
Mol Ecol ; 24(17): 4348-70, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26184487

RESUMO

Landscape genomics is an emerging research field that aims to identify the environmental factors that shape adaptive genetic variation and the gene variants that drive local adaptation. Its development has been facilitated by next-generation sequencing, which allows for screening thousands to millions of single nucleotide polymorphisms in many individuals and populations at reasonable costs. In parallel, data sets describing environmental factors have greatly improved and increasingly become publicly accessible. Accordingly, numerous analytical methods for environmental association studies have been developed. Environmental association analysis identifies genetic variants associated with particular environmental factors and has the potential to uncover adaptive patterns that are not discovered by traditional tests for the detection of outlier loci based on population genetic differentiation. We review methods for conducting environmental association analysis including categorical tests, logistic regressions, matrix correlations, general linear models and mixed effects models. We discuss the advantages and disadvantages of different approaches, provide a list of dedicated software packages and their specific properties, and stress the importance of incorporating neutral genetic structure in the analysis. We also touch on additional important aspects such as sampling design, environmental data preparation, pooled and reduced-representation sequencing, candidate-gene approaches, linearity of allele-environment associations and the combination of environmental association analyses with traditional outlier detection tests. We conclude by summarizing expected future directions in the field, such as the extension of statistical approaches, environmental association analysis for ecological gene annotation, and the need for replication and post hoc validation studies.


Assuntos
Meio Ambiente , Genética Populacional/métodos , Genômica/métodos , Modelos Genéticos , Adaptação Fisiológica/genética , Alelos , Frequência do Gene , Interação Gene-Ambiente , Genótipo , Modelos Lineares , Modelos Logísticos , Fenótipo , Software , Estatística como Assunto
11.
Mol Ecol ; 23(4): 832-42, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24451046

RESUMO

Directed dispersal by animal vectors has been found to have large effects on the structure and dynamics of plant populations adapted to frugivory. Yet, empirical data are lacking on the potential of directed dispersal by rotational grazing of domestic animals to mediate gene flow across the landscape. Here, we investigated the potential effect of large-flock shepherding on landscape-scale genetic structure in the calcareous grassland plant Dianthus carthusianorum, whose seeds lack morphological adaptations to dispersal to animals or wind. We found a significant pattern of genetic structure differentiating population within grazed patches of three nonoverlapping shepherding systems and populations of ungrazed patches. Among ungrazed patches, we found a strong and significant effect of isolation by distance (r = 0.56). In contrast, genetic distance between grazed patches within the same herding system was unrelated to geographical distance but significantly related to distance along shepherding routes (r = 0.44). This latter effect of connectivity along shepherding routes suggests that gene flow is spatially restricted occurring mostly between adjacent populations. While this study used nuclear markers that integrate gene flow by pollen and seed, the significant difference in the genetic structure between ungrazed patches and patches connected by large-flock shepherding indicates the potential of directed seed dispersal by sheep across the landscape.


Assuntos
Agricultura/métodos , Dianthus/genética , Ecossistema , Fluxo Gênico , Dispersão de Sementes , Animais , DNA de Plantas/genética , Genética Populacional , Alemanha , Repetições de Microssatélites , Ovinos
12.
Ecol Appl ; 24(2): 327-39, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24689144

RESUMO

For conservation managers, it is important to know whether landscape changes lead to increasing or decreasing gene flow. Although the discipline of landscape genetics assesses the influence of landscape elements on gene flow, no studies have yet used landscape-genetic models to predict gene flow resulting from landscape change. A species that has already been severely affected by landscape change is the large marsh grasshopper (Stethophyma grossum), which inhabits moist areas in fragmented agricultural landscapes in Switzerland. From transects drawn between all population pairs within maximum dispersal distance (< 3 km), we calculated several measures of landscape composition as well as some measures of habitat configuration. Additionally, a complete sampling of all populations in our study area allowed incorporating measures of population topology. These measures together with the landscape metrics formed the predictor variables in linear models with gene flow as response variable (F(ST) and mean pairwise assignment probability). With a modified leave-one-out cross-validation approach, we selected the model with the highest predictive accuracy. With this model, we predicted gene flow under several landscape-change scenarios, which simulated construction, rezoning or restoration projects, and the establishment of a new population. For some landscape-change scenarios, significant increase or decrease in gene flow was predicted, while for others little change was forecast. Furthermore, we found that the measures of population topology strongly increase model fit in landscape genetic analysis. This study demonstrates the use of predictive landscape-genetic models in conservation and landscape planning.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Fluxo Gênico , Gafanhotos/genética , Animais , Gafanhotos/fisiologia , Modelos Biológicos
13.
Nat Ecol Evol ; 8(2): 267-281, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225425

RESUMO

Genetic monitoring of populations currently attracts interest in the context of the Convention on Biological Diversity but needs long-term planning and investments. However, genetic diversity has been largely neglected in biodiversity monitoring, and when addressed, it is treated separately, detached from other conservation issues, such as habitat alteration due to climate change. We report an accounting of efforts to monitor population genetic diversity in Europe (genetic monitoring effort, GME), the evaluation of which can help guide future capacity building and collaboration towards areas most in need of expanded monitoring. Overlaying GME with areas where the ranges of selected species of conservation interest approach current and future climate niche limits helps identify whether GME coincides with anticipated climate change effects on biodiversity. Our analysis suggests that country area, financial resources and conservation policy influence GME, high values of which only partially match species' joint patterns of limits to suitable climatic conditions. Populations at trailing climatic niche margins probably hold genetic diversity that is important for adaptation to changing climate. Our results illuminate the need in Europe for expanded investment in genetic monitoring across climate gradients occupied by focal species, a need arguably greatest in southeastern European countries. This need could be met in part by expanding the European Union's Birds and Habitats Directives to fully address the conservation and monitoring of genetic diversity.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Conservação dos Recursos Naturais/métodos , Europa (Continente) , Ecossistema , Variação Genética
14.
Mol Ecol ; 22(9): 2467-82, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23452260

RESUMO

Most landscape genetic studies assess the impact of landscape elements on species' dispersal and gene flow. Many of these studies perform their analysis on all possible population pairs in a study area and do not explicitly consider the effects of spatial scale and population network topology on their results. Here, we examined the effects of spatial scale and population network topology on the outcome of a landscape genetic analysis. Additionally, we tested whether the relevant spatial scale of landscape genetic analysis could be defined by population network topology or by isolation-by-distance (IBD) patterns. A data set of the wetland grasshopper Stethophyma grossum, collected in a fragmented agricultural landscape, was used to analyse population network topology, IBD patterns and dispersal habitats, using least-cost transect analysis. Landscape genetic analyses neglecting spatial scale and population network topology resulted in models with low fits, with which a most likely dispersal habitat could not be identified. In contrast, analyses considering spatial scale and population network topology resulted in high model fits by restricting landscape genetic analysis to smaller scales (0-3 km) and neighbouring populations, as represented by a Gabriel graph. These models also successfully identified a likely dispersal habitat of S. grossum. The above results suggest that spatial scale and potentially population network topology should be more explicitly considered in future landscape genetic analyses.


Assuntos
Genética Populacional , Gafanhotos/genética , Áreas Alagadas , Animais , Fluxo Gênico , Variação Genética , Repetições de Microssatélites , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA
15.
Mol Ecol ; 22(22): 5594-607, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24102711

RESUMO

Natural genetic variation is essential for the adaptation of organisms to their local environment and to changing environmental conditions. Here, we examine genomewide patterns of nucleotide variation in natural populations of the outcrossing herb Arabidopsis halleri and associations with climatic variation among populations in the Alps. Using a pooled population sequencing (Pool-Seq) approach, we discovered more than two million SNPs in five natural populations and identified highly differentiated genomic regions and SNPs using FST -based analyses. We tested only the most strongly differentiated SNPs for associations with a nonredundant set of environmental factors using partial Mantel tests to identify topo-climatic factors that may underlie the observed footprints of selection. Possible functions of genes showing signatures of selection were identified by Gene Ontology analysis. We found 175 genes to be highly associated with one or more of the five tested topo-climatic factors. Of these, 23.4% had unknown functions. Genetic variation in four candidate genes was strongly associated with site water balance and solar radiation, and functional annotations were congruent with these environmental factors. Our results provide a genomewide perspective on the distribution of adaptive genetic variation in natural plant populations from a highly diverse and heterogeneous alpine environment.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Clima , Genética Populacional , Seleção Genética , DNA de Plantas/genética , Ecossistema , Ontologia Genética , Genes de Plantas , Genômica/métodos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Suíça
16.
Evol Appl ; 16(9): 1586-1597, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37752964

RESUMO

The European cockchafer Melolontha melolontha is an agricultural pest in many European countries. Populations have a synchronized 3 or 4 years life cycle, leading to temporally isolated populations. Despite the economic importance and availability of comprehensive historical as well as current records on cockchafer occurrence, population genomic analyses of M. melolontha are missing. For example, the effects of geographic separation caused by the mountainous terrain of the Alps and of temporal isolation on the genomic structure of M. melolontha still remain unknown. To address this gap, we genotyped 475 M. melolontha adults collected during 3 years from 35 sites in a central Alpine region. Subsequent population structure analyses discriminated two main genetic clusters, i.e., the South Tyrol cluster including collections located southeast of the Alpine mountain range, and a northwestern alpine cluster with all the other collections, reflecting distinct evolutionary history and geographic barriers. The "passo di Resia" linking South and North Tyrol represented a regional contact zone of the two genetic clusters, highlighting genomic differentiation between the collections from the northern and southern regions. Although the collections from northwestern Italy were assigned to the northwestern alpine genetic cluster, they displayed evidence of admixture with the South Tyrolean genetic cluster, suggesting shared ancestry. A linear mixed model confirmed that both geographic distance and, to a lower extent, also temporal isolation had a significant effect on the genetic distance among M. melolontha populations. These effects may be attributed to limited dispersal capacity and reproductive isolation resulting from synchronized and non-synchronized swarming flights, respectively. This study contributes to the understanding of the phylogeography of an organism that is recognized as an agricultural problem and provides significant information on the population genomics of insect species with prolonged temporally shifted and locally synchronized life cycles.

17.
Trends Ecol Evol ; 38(3): 261-274, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36402651

RESUMO

Detecting the extrinsic selective pressures shaping genomic variation is critical for a better understanding of adaptation and for forecasting evolutionary responses of natural populations to changing environmental conditions. With increasing availability of geo-referenced environmental data, landscape genomics provides unprecedented insights into how genomic variation and underlying gene functions affect traits potentially under selection. Yet, the robustness of genotype-environment associations used in landscape genomics remains tempered due to various limitations, including the characteristics of environmental data used, sampling designs employed, and statistical frameworks applied. Here, we argue that using complementary or new environmental data sources and well-informed sampling designs may help improve the detection of selective pressures underlying patterns of local adaptation in various organisms and environments.


Assuntos
Genética Populacional , Genômica , Genótipo , Adaptação Fisiológica/genética , Fenótipo , Seleção Genética
18.
Ecol Lett ; 15(12): 1439-48, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23006492

RESUMO

The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies.


Assuntos
Biodiversidade , Variação Genética , Plantas/genética , Ecossistema , Geografia
19.
Mol Ecol ; 21(15): 3644-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22988574

RESUMO

Landscape genetics offers a promising framework for assessing the interactions between the environment and adaptive genetic variation in natural populations. A recent workshop held at the University of Neuchatel brought together leading experts in this field to address current insights and future research directions in adaptive landscape genetics. Considerable amounts of genetic and / or environmental data can now be collected, but the forthcoming challenge is to do more with such manna. This requires a markedly better understanding of the genetic variation that is adaptive and prompts for advances in information management together with the development of a balance between theory and data. Moreover, showing the links between landscapes and adaptive genetic variation will ultimately move the field beyond association studies.


Assuntos
Adaptação Biológica/genética , Meio Ambiente , Variação Genética , Genética Populacional
20.
Mol Ecol ; 21(23): 5640-2, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23310963

RESUMO

Identifying landscape elements that influence gene flow and migration in wild species is the current main topic of landscape genetics. Most landscape genetic studies infer gene flow and migration from genetic distances among populations or individuals and statistically relate these measurements to landscape composition and configuration. This approach assumes symmetrical gene flow between pairs of populations. Such an assumption, however, will often be violated, especially in source­sink systems. Source populations provide more emigrants than they receive immigrants, and sink populations get many immigrants, but release few emigrants. Source­sink dynamics cannot be explored using common landscape genetic approaches relying on genetic distances. In this issue of Molecular Ecology, Andreasen et al. (2012) apply an alternative approach allowing them to infer asymmetrical migration. They use a Bayesian assignment test among objectively defined populations of mountain lions (Puma concolor) in western USA to estimate recent and directional migration rates. The study shows that an area with a high amount of wildlife refuges and low hunting pressure harbours a source population for mountain lion dispersal, while areas with high hunting pressures form sink populations; a result helpful in making informed decisions in conservation management.


Assuntos
Genética Populacional , Repetições de Microssatélites , Dinâmica Populacional , Puma/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA