Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0300892, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512959

RESUMO

Inflammatory bowel diseases (IBD) result from uncontrolled inflammation in the intestinal mucosa leading to damage and loss of function. Both innate and adaptive immunity contribute to the inflammation of IBD and innate and adaptive immune cells reciprocally activate each other in a forward feedback loop. In order to better understand innate immune contributions to IBD, we developed a model of spontaneous 100% penetrant, early onset colitis that occurs in the absence of adaptive immunity by crossing villin-TNFAIP3 mice to RAG1-/- mice (TRAG mice). This model is driven by microbes and features increased levels of innate lymphoid cells in the intestinal mucosa. To investigate the role of type 3 innate lymphoid cells (ILC3) in the innate colitis of TRAG mice, we crossed them to retinoid orphan receptor gamma t deficient (Rorγt-/-) mice. Rorγt-/- x TRAG mice exhibited markedly reduced eosinophilia in the colonic mucosa, but colitis persisted in these mice. Colitis in Rorγt-/- x TRAG mice was characterized by increased infiltration of the intestinal mucosa by neutrophils, inflammatory monocytes, macrophages and other innate cells. RNA and cellular profiles of Rorγt-/- x TRAG mice were consistent with a lack of ILC3 and ILC3 derived cytokines, reduced antimicrobial factors, increased activation oof epithelial repair processes and reduced activation of epithelial cell STAT3. The colitis in Rorγt-/- x TRAG mice was ameliorated by antibiotic treatment indicating that microbes contribute to the ILC3-independent colitis of these mice. Together, these gene expression and cell signaling signatures reflect the double-edged sword of ILC3 in the intestine, inducing both proinflammatory and antimicrobial protective responses. Thus, Rorγt promotes eosinophilia but Rorγt and Rorγt-dependent ILC3 are dispensable for the innate colitis in TRAG mice.


Assuntos
Anti-Infecciosos , Colite , Eosinofilia , Doenças Inflamatórias Intestinais , Camundongos , Animais , Imunidade Inata , Linfócitos/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Eosinofilia/metabolismo , Anti-Infecciosos/metabolismo , Retinoides , Camundongos Endogâmicos C57BL
2.
Artigo em Inglês | MEDLINE | ID: mdl-36148978

RESUMO

The field of oncology has transformed with the advent of immunotherapies. The standard of care for multiple cancers now includes novel drugs that target key checkpoints that function to modulate immune responses, enabling the patient's immune system to elicit an effective anti-tumor response. While these immune-based approaches can have dramatic effects in terms of significantly reducing tumor burden and prolonging survival for patients, the therapeutic approach remains active only in a minority of patients and is often not durable. Multiple biological investigations have identified key markers that predict response to the most common form of immunotherapy-immune checkpoint inhibitors (ICI). These biomarkers help enrich patients for ICI but are not 100% predictive. Understanding the complex interactions of these biomarkers with other pathways and factors that lead to ICI resistance remains a major goal. Principles of oncophysics-the idea that cancer can be described as a multiscale physical aberration-have shown promise in recent years in terms of capturing the essence of the complexities of ICI interactions. Here, we review the biological knowledge of mechanisms of ICI action and how these are incorporated into modern oncophysics-based mathematical models. Building on the success of oncophysics-based mathematical models may help to discover new, rational methods to engineer immunotherapy for patients in the future. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Imunoterapia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA