Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Ann Neurol ; 94(2): 271-284, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177857

RESUMO

OBJECTIVE: This study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation (DBS) in early stage Parkinson disease (PD) pilot clinical trial. METHODS: To determine anatomical and network correlates associated with motor outcomes for subjects randomized to early DBS (n = 14), voxelwise sweet spot mapping and structural connectivity analyses were carried out using outcomes of motor progression (Unified Parkinson Disease Rating Scale Part III [UPDRS-III] 7-day OFF scores [∆baseline➔24 months, MedOFF/StimOFF]) and symptomatic motor improvement (UPDRS-III ON scores [%∆baseline➔24 months, MedON/StimON]). RESULTS: Sweet spot mapping revealed a location associated with slower motor progression in the dorsolateral STN (anterior/posterior commissure coordinates: 11.07 ± 0.82mm lateral, 1.83 ± 0.61mm posterior, 3.53 ± 0.38mm inferior to the midcommissural point; Montreal Neurological Institute coordinates: +11.25, -13.56, -7.44mm). Modulating fiber tracts from supplementary motor area (SMA) and primary motor cortex (M1) to the STN correlated with slower motor progression across STN DBS subjects, whereas fiber tracts originating from pre-SMA and cerebellum were negatively associated with motor progression. Robustness of the fiber tract model was demonstrated in leave-one-patient-out (R = 0.56, p = 0.02), 5-fold (R = 0.50, p = 0.03), and 10-fold (R = 0.53, p = 0.03) cross-validation paradigms. The sweet spot and fiber tracts associated with motor progression revealed strong similarities to symptomatic motor improvement sweet spot and connectivity in this early stage PD cohort. INTERPRETATION: These results suggest that stimulating the dorsolateral region of the STN receiving input from M1 and SMA (but not pre-SMA) is associated with slower motor progression across subjects receiving STN DBS in early stage PD. This finding is hypothesis-generating and must be prospectively tested in a larger study. ANN NEUROL 2023;94:271-284.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Substância Branca , Humanos , Núcleo Subtalâmico/fisiologia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Resultado do Tratamento
2.
Neuroimage ; 268: 119862, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36610682

RESUMO

Following its introduction in 2014 and with support of a broad international community, the open-source toolbox Lead-DBS has evolved into a comprehensive neuroimaging platform dedicated to localizing, reconstructing, and visualizing electrodes implanted in the human brain, in the context of deep brain stimulation (DBS) and epilepsy monitoring. Expanding clinical indications for DBS, increasing availability of related research tools, and a growing community of clinician-scientist researchers, however, have led to an ongoing need to maintain, update, and standardize the codebase of Lead-DBS. Major development efforts of the platform in recent years have now yielded an end-to-end solution for DBS-based neuroimaging analysis allowing comprehensive image preprocessing, lead localization, stimulation volume modeling, and statistical analysis within a single tool. The aim of the present manuscript is to introduce fundamental additions to the Lead-DBS pipeline including a deformation warpfield editor and novel algorithms for electrode localization. Furthermore, we introduce a total of three comprehensive tools to map DBS effects to local, tract- and brain network-levels. These updates are demonstrated using a single patient example (for subject-level analysis), as well as a retrospective cohort of 51 Parkinson's disease patients who underwent DBS of the subthalamic nucleus (for group-level analysis). Their applicability is further demonstrated by comparing the various methodological choices and the amount of explained variance in clinical outcomes across analysis streams. Finally, based on an increasing need to standardize folder and file naming specifications across research groups in neuroscience, we introduce the brain imaging data structure (BIDS) derivative standard for Lead-DBS. Thus, this multi-institutional collaborative effort represents an important stage in the evolution of a comprehensive, open-source pipeline for DBS imaging and connectomics.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
3.
Brain Cogn ; 136: 103597, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31491732

RESUMO

Parkinson's disease (PD) is a progressing neurodegenerative disease predominantly involving the loss of dopamine producing neurons with hallmark symptoms of motor disorders and cognitive, motivational, emotional, and perceptual impairments. Intriguingly, PD can also be connected-often anecdotally-with a sudden burst of artistic creativity, motivation, or changed quality/style of produced art. This has led to growing empirical interest, promising a window into brain function and the unique neurological signature of artists. This topic also fits a growing interest from researchers in other areas, including Alzheimer's or other dementia, which have suggested that specific changes in art production/appraisal may provide a unique basis for therapy, diagnosis, or understanding of these diseases. However, whether PD also shows similar impacts on how we perceive and evaluate art has never been systematically addressed. We compared a cohort of PD patients against age-matched healthy controls, asking participants to rate paintings using scales of liking and beauty and terms pertaining to artworks' formal and conceptual qualities previously designed to provide a rubric for symptom identification. We found no evidence for PD-related differences in liking or beauty. However, PD patients showed higher ratings on assessed "emotionality," potentially relating to the tie between PD, dopamine pathways, and emotion/reward.


Assuntos
Emoções/fisiologia , Estética , Pinturas , Doença de Parkinson/psicologia , Idoso , Criatividade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Motivação/fisiologia
4.
medRxiv ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38903109

RESUMO

Deep brain stimulation is a viable and efficacious treatment option for dystonia. While the internal pallidum serves as the primary target, more recently, stimulation of the subthalamic nucleus (STN) has been investigated. However, optimal targeting within this structure and its complex surroundings have not been studied in depth. Indeed, multiple historical targets that have been used for surgical treatment of dystonia are directly adjacent to the STN. Further, multiple types of dystonia exist, and outcomes are variable, suggesting that not all types would profit maximally from the exact same target. Therefore, a thorough investigation of the neural substrates underlying effects on dystonia symptoms is warranted. Here, we analyze a multi-center cohort of isolated dystonia patients with subthalamic implantations (N = 58) and relate their stimulation sites to improvement of appendicular and cervical symptoms as well as blepharospasm. Stimulation of the ventral oral posterior nucleus of thalamus and surrounding regions was associated with improvement in cervical dystonia, while stimulation of the dorsolateral STN was associated with improvement in limb dystonia and blepharospasm. This dissociation was also evident for structural connectivity, where the cerebellothalamic, corticospinal and pallidosubthalamic tracts were associated with improvement of cervical dystonia, while hyperdirect and subthalamopallidal pathways were associated with alleviation of limb dystonia and blepharospasm. Importantly, a single well-placed electrode may reach the three optimal target sites. On the level of functional networks, improvement of limb dystonia was correlated with connectivity to the corresponding somatotopic regions in primary motor cortex, while alleviation of cervical dystonia was correlated with connectivity to the recently described 'action-mode' network that involves supplementary motor and premotor cortex. Our findings suggest that different types of dystonia symptoms are modulated via distinct networks. Namely, appendicular dystonia and blepharospasm are improved with modulation of the basal ganglia, and, in particular, the subthalamic circuitry, including projections from the primary motor cortex. In contrast, cervical dystonia was more responsive when engaging the cerebello-thalamo-cortical circuit, including direct stimulation of ventral thalamic nuclei. These findings may inform DBS targeting and image-based programming strategies for patient-specific treatment of dystonia.

5.
Nat Commun ; 15(1): 4662, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821913

RESUMO

Deep Brain Stimulation can improve tremor, bradykinesia, rigidity, and axial symptoms in patients with Parkinson's disease. Potentially, improving each symptom may require stimulation of different white matter tracts. Here, we study a large cohort of patients (N = 237 from five centers) to identify tracts associated with improvements in each of the four symptom domains. Tremor improvements were associated with stimulation of tracts connected to primary motor cortex and cerebellum. In contrast, axial symptoms are associated with stimulation of tracts connected to the supplementary motor cortex and brainstem. Bradykinesia and rigidity improvements are associated with the stimulation of tracts connected to the supplementary motor and premotor cortices, respectively. We introduce an algorithm that uses these symptom-response tracts to suggest optimal stimulation parameters for DBS based on individual patient's symptom profiles. Application of the algorithm illustrates that our symptom-tract library may bear potential in personalizing stimulation treatment based on the symptoms that are most burdensome in an individual patient.


Assuntos
Estimulação Encefálica Profunda , Córtex Motor , Doença de Parkinson , Tremor , Humanos , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Tremor/terapia , Tremor/fisiopatologia , Córtex Motor/fisiopatologia , Algoritmos , Hipocinesia/terapia , Hipocinesia/fisiopatologia , Substância Branca/patologia , Substância Branca/fisiopatologia , Rigidez Muscular/terapia , Cerebelo/fisiopatologia , Estudos de Coortes , Resultado do Tratamento
6.
Med Image Anal ; 91: 103041, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007978

RESUMO

Spatial normalization-the process of mapping subject brain images to an average template brain-has evolved over the last 20+ years into a reliable method that facilitates the comparison of brain imaging results across patients, centers & modalities. While overall successful, sometimes, this automatic process yields suboptimal results, especially when dealing with brains with extensive neurodegeneration and atrophy patterns, or when high accuracy in specific regions is needed. Here we introduce WarpDrive, a novel tool for manual refinements of image alignment after automated registration. We show that the tool applied in a cohort of patients with Alzheimer's disease who underwent deep brain stimulation surgery helps create more accurate representations of the data as well as meaningful models to explain patient outcomes. The tool is built to handle any type of 3D imaging data, also allowing refinements in high-resolution imaging, including histology and multiple modalities to precisely aggregate multiple data sources together.


Assuntos
Doença de Alzheimer , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional , Mapeamento Encefálico/métodos , Doença de Alzheimer/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
7.
Nat Neurosci ; 27(3): 573-586, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38388734

RESUMO

Frontal circuits play a critical role in motor, cognitive and affective processing, and their dysfunction may result in a variety of brain disorders. However, exactly which frontal domains mediate which (dys)functions remains largely elusive. We studied 534 deep brain stimulation electrodes implanted to treat four different brain disorders. By analyzing which connections were modulated for optimal therapeutic response across these disorders, we segregated the frontal cortex into circuits that had become dysfunctional in each of them. Dysfunctional circuits were topographically arranged from occipital to frontal, ranging from interconnections with sensorimotor cortices in dystonia, the primary motor cortex in Tourette's syndrome, the supplementary motor area in Parkinson's disease, to ventromedial prefrontal and anterior cingulate cortices in obsessive-compulsive disorder. Our findings highlight the integration of deep brain stimulation with brain connectomics as a powerful tool to explore couplings between brain structure and functional impairments in the human brain.


Assuntos
Estimulação Encefálica Profunda , Córtex Motor , Doença de Parkinson , Humanos , Encéfalo , Córtex Motor/fisiologia , Doença de Parkinson/terapia , Mapeamento Encefálico
8.
Biol Psychiatry ; 96(2): 101-113, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38141909

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is a promising treatment option for treatment-refractory obsessive-compulsive disorder (OCD). Several stimulation targets have been used, mostly in and around the anterior limb of the internal capsule and ventral striatum. However, the precise target within this region remains a matter of debate. METHODS: Here, we retrospectively studied a multicenter cohort of 82 patients with OCD who underwent DBS of the ventral capsule/ventral striatum and mapped optimal stimulation sites in this region. RESULTS: DBS sweet-spot mapping performed on a discovery set of 58 patients revealed 2 optimal stimulation sites associated with improvements on the Yale-Brown Obsessive Compulsive Scale, one in the anterior limb of the internal capsule that overlapped with a previously identified OCD-DBS response tract and one in the region of the inferior thalamic peduncle and bed nucleus of the stria terminalis. Critically, the nucleus accumbens proper and anterior commissure were associated with beneficial but suboptimal clinical improvements. Moreover, overlap with the resulting sweet- and sour-spots significantly estimated variance in outcomes in an independent cohort of 22 patients from 2 additional DBS centers. Finally, beyond obsessive-compulsive symptoms, stimulation of the anterior site was associated with optimal outcomes for both depression and anxiety, while the posterior site was only associated with improvements in depression. CONCLUSIONS: Our results suggest how to refine targeting of DBS in OCD and may be helpful in guiding DBS programming in existing patients.


Assuntos
Estimulação Encefálica Profunda , Cápsula Interna , Transtorno Obsessivo-Compulsivo , Humanos , Transtorno Obsessivo-Compulsivo/terapia , Estimulação Encefálica Profunda/métodos , Masculino , Feminino , Adulto , Estudos Retrospectivos , Pessoa de Meia-Idade , Cápsula Interna/diagnóstico por imagem , Estriado Ventral/diagnóstico por imagem , Estriado Ventral/fisiopatologia , Resultado do Tratamento , Adulto Jovem
9.
medRxiv ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36945497

RESUMO

Frontal circuits play a critical role in motor, cognitive, and affective processing - and their dysfunction may result in a variety of brain disorders. However, exactly which frontal domains mediate which (dys)function remains largely elusive. Here, we study 534 deep brain stimulation electrodes implanted to treat four different brain disorders. By analyzing which connections were modulated for optimal therapeutic response across these disorders, we segregate the frontal cortex into circuits that became dysfunctional in each of them. Dysfunctional circuits were topographically arranged from occipital to rostral, ranging from interconnections with sensorimotor cortices in dystonia, with the primary motor cortex in Tourette's syndrome, the supplementary motor area in Parkinson's disease, to ventromedial prefrontal and anterior cingulate cortices in obsessive-compulsive disorder. Our findings highlight the integration of deep brain stimulation with brain connectomics as a powerful tool to explore couplings between brain structure and functional impairment in the human brain.

10.
J Neurol ; 269(11): 6116-6126, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35861855

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is a promising novel approach for managing refractory Gilles de la Tourette's syndrome (GTS). The subthalamic nucleus (STN) is the most common DBS target for treating movement disorders, and smaller case studies have reported the efficacy of bilateral STN-DBS treatment for relieving tic symptoms. However, management of GTS and treatment mechanism of STN-DBS in GTS remain to be elucidated. METHODS: Ten patients undergoing STN-DBS were included. Tics severity was evaluated using the Yale Global Tic Severity Scale. The severities of comorbid psychiatric symptoms of obsessive-compulsive behavior (OCB), attention-deficit/hyperactivity disorder, anxiety, and depression; social and occupational functioning; and quality of life were assessed. Volumes of tissue activated were used as seed points for functional connectivity analysis performed using a control dataset. RESULTS: The overall tics severity significantly reduced, with 62.9% ± 26.2% and 58.8% ± 27.2% improvements at the 6- and 12-months follow-up, respectively. All three patients with comorbid OCB showed improvement in their OCB symptoms at both the follow-ups. STN-DBS treatment was reasonably well tolerated by the patients with GTS. The most commonly reported side effect was light dysarthria. The stimulation effect of STN-DBS might regulate these symptoms through functional connectivity with the thalamus, pallidum, substantia nigra pars reticulata, putamen, insula, and anterior cingulate cortices. CONCLUSIONS: STN-DBS was associated with symptomatic improvement in severe and refractory GTS without significant adverse events. The STN is a promising DBS target by stimulating both sensorimotor and limbic subregions, and specific brain area doses affect treatment outcomes.


Assuntos
Estimulação Encefálica Profunda , Tiques , Síndrome de Tourette , Estimulação Encefálica Profunda/efeitos adversos , Globo Pálido , Humanos , Qualidade de Vida , Síndrome de Tourette/diagnóstico por imagem , Síndrome de Tourette/terapia
11.
Prog Neurobiol ; 210: 102211, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34958874

RESUMO

At the group-level, deep brain stimulation leads to significant therapeutic benefit in a multitude of neurological and neuropsychiatric disorders. At the single-patient level, however, symptoms may sometimes persist despite "optimal" electrode placement at established treatment coordinates. This may be partly explained by limitations of disease-centric strategies that are unable to account for heterogeneous phenotypes and comorbidities observed in clinical practice. Instead, tailoring electrode placement and programming to individual patients' symptom profiles may increase the fraction of top-responding patients. Here, we propose a three-step, circuit-based framework with the aim of developing patient-specific treatment targets that address the unique symptom constellation prevalent in each patient. First, we describe how a symptom network target library could be established by mapping beneficial or undesirable DBS effects to distinct circuits based on (retrospective) group-level data. Second, we suggest ways of matching the resulting symptom networks to circuits defined in the individual patient (template matching). Third, we introduce network blending as a strategy to calculate optimal stimulation targets and parameters by selecting and weighting a set of symptom-specific networks based on the symptom profile and subjective priorities of the individual patient. We integrate the approach with published literature and conclude by discussing limitations and future challenges.


Assuntos
Conectoma , Estimulação Encefálica Profunda , Estimulação Encefálica Profunda/métodos , Humanos , Medicina de Precisão , Estudos Retrospectivos
12.
Biol Psychiatry ; 90(10): 701-713, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34134839

RESUMO

BACKGROUND: Multiple deep brain stimulation (DBS) targets have been proposed for treating intractable obsessive-compulsive disorder (OCD). Here, we investigated whether stimulation effects of different target sites would be mediated by one common or several segregated functional brain networks. METHODS: First, seeding from active electrodes of 4 OCD patient cohorts (N = 50) receiving DBS to anterior limb of the internal capsule or subthalamic nucleus zones, optimal functional connectivity profiles for maximal Yale-Brown Obsessive Compulsive Scale improvements were calculated and cross-validated in leave-one-cohort-out and leave-one-patient-out designs. Second, we derived optimal target-specific connectivity patterns to determine brain regions mutually predictive of clinical outcome for both targets and others predictive for either target alone. Functional connectivity was defined using resting-state functional magnetic resonance imaging data acquired in 1000 healthy participants. RESULTS: While optimal functional connectivity profiles showed both commonalities and differences between target sites, robust cross-predictions of clinical improvements across OCD cohorts and targets suggested a shared network. Connectivity to the anterior cingulate cortex, insula, and precuneus, among other regions, was predictive regardless of stimulation target. Regions with maximal connectivity to these commonly predictive areas included the insula, superior frontal gyrus, anterior cingulate cortex, and anterior thalamus, as well as the original stereotactic targets. CONCLUSIONS: Pinpointing the network modulated by DBS for OCD from different target sites identified a set of brain regions to which DBS electrodes associated with optimal outcomes were functionally connected-regardless of target choice. On these grounds, we establish potential brain areas that could prospectively inform additional or alternative neuromodulation targets for obsessive-compulsive disorder.


Assuntos
Estimulação Encefálica Profunda , Transtorno Obsessivo-Compulsivo , Núcleo Subtalâmico , Humanos , Cápsula Interna/diagnóstico por imagem , Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/terapia
13.
Biol Psychiatry ; 90(10): 678-688, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34482949

RESUMO

Obsessive-compulsive disorder is among the most disabling psychiatric disorders. Although deep brain stimulation is considered an effective treatment, its use in clinical practice is not fully established. This is, at least in part, due to ambiguity about the best suited target and insufficient knowledge about underlying mechanisms. Recent advances suggest that changes in broader brain networks are responsible for improvement of obsessions and compulsions, rather than local impact at the stimulation site. These findings were fueled by innovative methodological approaches using brain connectivity analyses in combination with neuromodulatory interventions. Such a connectomic approach for neuromodulation constitutes an integrative account that aims to characterize optimal target networks. In this critical review, we integrate findings from connectomic studies and deep brain stimulation interventions to characterize a neural network presumably effective in reducing obsessions and compulsions. To this end, we scrutinize methodologies and seemingly conflicting findings with the aim to merge observations to identify common and diverse pathways for treating obsessive-compulsive disorder. Ultimately, we propose a unified network that-when modulated by means of cortical or subcortical interventions-alleviates obsessive-compulsive symptoms.


Assuntos
Conectoma , Estimulação Encefálica Profunda , Transtorno Obsessivo-Compulsivo , Encéfalo/diagnóstico por imagem , Humanos , Transtorno Obsessivo-Compulsivo/terapia , Resultado do Tratamento
14.
Eur Neuropsychopharmacol ; 41: 1-15, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32994116

RESUMO

Dysregulation of physiological stress reactivity plays a key role in the development and relapse risk of alcohol dependence. This article reviews studies investigating physiological responses to experimentally induced acute stress in patients with alcohol dependence. A systematic search from electronic databases resulted in 3641 articles found and after screening 62 articles were included in our review. Studies are analyzed based on stress types (i.e., social stress tasks and nonsocial stress tasks) and physiological markers (i.e., the nervous system, the endocrine system, somatic responses and the immune system). In studies applying nonsocial stress tasks, alcohol-dependent patients were reported to show a blunted stress response compared with healthy controls in the majority of studies applying markers of adrenocorticotropic hormone and cortisol. In studies applying social stress tasks, findings are inconsistent, with less than half of the studies reporting altered physiological stress responses in patients. We discuss the impact of duration of abstinence, comorbidities, baseline physiological arousal and intervention on the discrepancy of study findings. Furthermore, we review evidence for an association between blunted physiological stress responses and the relapse risk among patients with alcohol dependence.


Assuntos
Alcoolismo/sangue , Alcoolismo/psicologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico/sangue , Estresse Psicológico/psicologia , Doença Aguda , Abstinência de Álcool/psicologia , Abstinência de Álcool/tendências , Alcoolismo/diagnóstico , Humanos , Hidrocortisona/sangue , Estresse Psicológico/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA