Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 114(14): 140404, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910097

RESUMO

Tune-out wavelengths measured with an atom interferometer are sensitive to laboratory rotation rates because of the Sagnac effect, vector polarizability, and dispersion compensation. We observed shifts in measured tune-out wavelengths as large as 213 pm with a potassium atom beam interferometer, and we explore how these shifts can be used for an atom interferometer gyroscope.

2.
Phys Rev Lett ; 109(24): 243004, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23368315

RESUMO

Light at a magic-zero wavelength causes a zero energy shift for an atom. We measured the longest magic-zero wavelength for ground state potassium atoms to be λ(zero)=768.9712(15) nm, and we show how this measurement provides an improved experimental benchmark for atomic structure calculations. This λ(zero) measurement determines the ratio of the potassium atom D1 and D2 line strengths with record precision. It also demonstrates a new application for atom interferometry, and we discuss how decoherence will fundamentally limit future measurements of magic-zero wavelengths.

3.
J Phys Chem A ; 115(25): 7134-40, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21604727

RESUMO

van der Waals (vdW) atom-surface potentials can be excellent benchmarks for atomic structure calculations. This is especially true if measurements are made with two different types of atoms interacting with the same surface sample. Here we show theoretically how ratios of vdW potential strengths (e.g., C3(K)/C3(Na)) depend sensitively on the properties of each atom, yet these ratios are relatively insensitive to properties of the surface. We discuss how C3 ratios depend on atomic core electrons by using a two-oscillator model to represent the contribution from atomic valence electrons and core electrons separately. We explain why certain pairs of atoms are preferable to study for future experimental tests of atomic structure calculations. A well chosen pair of atoms (e.g., K and Na) will have a C3 ratio that is insensitive to the permittivity of the surface, whereas a poorly chosen pair (e.g., K and He) will have a ratio of C3 values that depends more strongly on the permittivity of the surface.

4.
Phys Rev Lett ; 105(23): 233202, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21231458

RESUMO

We measured ratios of van der Waals potential coefficients (C3) for different atoms (Li, Na, K, and Rb) interacting with the same surface by studying atom diffraction from a nanograting. These measurements are a sensitive test of atomic structure calculations because C3 ratios are strongly influenced by core electrons and only weakly influenced by the permittivity and geometry of the surface. Our measurement uncertainty of 2% in the ratio C(3)(K)/C(3)(Na) is close to the uncertainty of the best theoretical predictions, and some of these predictions are inconsistent with our measurement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA